Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cryptococcosis, one of the most important systemic mycosis in the world, is caused by different genotypes of and , which differ in their ecology, epidemiology, and antifungal susceptibility. Therefore, the search for new molecular markers for genotyping, pathogenicity and drug susceptibility is necessary. Group I introns fulfill the requisites for such task because (i) they are polymorphic sequences; (ii) their self-splicing is inhibited by some drugs; and (iii) their correct splicing under parasitic conditions is indispensable for pathogen survival. Here, we investigated the presence of group I introns in the mitochondrial gene in 77 isolates and its possible relation to drug susceptibility. Sequencing revealed two new introns in the gene. All the introns showed high sequence similarity to other mitochondrial introns from distinct fungi, supporting the hypothesis of an ancient non-allelic invasion. Intron presence was statistically associated with those genotypes reported to be less pathogenic ( < 0.001). Further virulence assays are needed to confirm this finding. In addition, antifungal tests indicated that the presence of introns may influence the minimum inhibitory concentration (MIC) of amphotericin B and 5-fluorocytosine. These findings point to group I introns in the mitochondrial genome of as potential molecular markers for antifungal resistance, as well as therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808193PMC
http://dx.doi.org/10.3389/fmicb.2018.00086DOI Listing

Publication Analysis

Top Keywords

group introns
16
drug susceptibility
12
introns
8
molecular markers
8
introns mitochondrial
8
polymorphism mitochondrial
4
group
4
mitochondrial group
4
introns genotypes
4
genotypes association
4

Similar Publications

Personalised genomic strategies improve diagnostic yield in inherited retinal dystrophies: a stepwise, patient-centred approach.

Eye (Lond)

September 2025

Genetics Laboratory, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.

Background: Inherited retinal dystrophies (IRDs) are a genetically heterogeneous group of conditions, with approximately 40% of cases remaining unresolved after initial genetic testing. This study aimed to assess the impact of a personalised genomic approach integrating whole-exome sequencing (WES) reanalysis, whole-genome sequencing (WGS), customised gene panels and functional assays to improve diagnostic yield in unresolved cases.

Subjects/methods: We retrospectively reviewed a cohort of 597 individuals with IRDs, including 525 probands and 72 affected relatives.

View Article and Find Full Text PDF

Background: Stickler syndrome (STL) is a group of related connective tissue disorders characterized by heterogeneous clinical presentations with varying degrees of orofacial, ocular, skeletal, and auditory abnormalities. However, this condition is difficult to diagnose on the basis of clinical features because of phenotypic variability. Thus, expanding the variant spectrum of this disease will aid in achieving a firm definitive diagnosis of STL.

View Article and Find Full Text PDF

Background: The Aux/IAA protein is integral to the modulation of auxin signaling, which is essential for plant growth and development. However, systematic analysis on the Aux/IAA gene family in pineapple ( L.) remains unexplored.

View Article and Find Full Text PDF

Integrating experimental feedback improves generative models for biological sequences.

Nucleic Acids Res

August 2025

Sorbonne Université, CNRS, Department of Computational, Quantitative and Synthetic Biology-CQSB, 75005 Paris, France.

Generative probabilistic models have shown promise in designing artificial RNA and protein sequences but often suffer from high rates of false positives, where sequences predicted as functional fail experimental validation. To address this critical limitation, we explore the impact of reintegrating experimental feedback into the model design process. We propose a likelihood-based reintegration scheme, which we test through extensive computational experiments on both RNA and protein datasets, as well as through wet-lab experiments on the self-splicing ribozyme from the Group I intron RNA family where our approach demonstrates particular efficacy.

View Article and Find Full Text PDF

Background: The Brassinazole-resistant (BZR) family of transcription factors acts as key regulators in brassinosteroid (BR) signaling, influencing plant growth, development, biotic and abiotic stresses. However, systematic analysis of the genes in oat has not been conducted. Moreover, little is known about their functions in osmotic stress, which is a major abiotic stress affecting oat production.

View Article and Find Full Text PDF