Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents the effect of aqueous uranium speciation (U-hydroxides and U-hydroxo-carbonates) on the interaction of this radionuclide with the cells of the yeast Rhodotorula mucigilanosa BII-R8. This strain was isolated from Spanish bentonites considered as reference materials for the engineered barrier components of the future deep geological repository of radioactive waste. X-ray absorption and infrared spectroscopy showed that the aqueous uranium speciation has no effect on the uranium binding process by this yeast strain. The cells bind mobile uranium species (U-hydroxides and U-hydroxo-carbonates) from solution via a time-dependent process initiated by the adsorption of uranium species to carboxyl groups. This leads to the subsequent involvement of organic phosphate groups forming uranium complexes with a local coordination similar to that of the uranyl mineral phase meta-autunite. Scanning transmission electron microscopy with high angle annular dark field analysis showed uranium accumulations at the cell surface associated with phosphorus containing ligands. Moreover, the effect of uranium mobile species on the cell viability and metabolic activity was examined by means of flow cytometry techniques, revealing that the cell metabolism is more affected by higher concentrations of uranium than the cell viability. The results obtained in this work provide new insights on the interaction of uranium with bentonite natural yeast from genus Rhodotorula under deep geological repository relevant conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.02.055DOI Listing

Publication Analysis

Top Keywords

uranium
11
uranium cell
8
cell surface
8
natural yeast
8
aqueous uranium
8
uranium speciation
8
u-hydroxides u-hydroxo-carbonates
8
deep geological
8
geological repository
8
uranium species
8

Similar Publications

Expanding Uranium Oxide Hydrate Frameworks toward Early Lanthanides: Cases for Pr(III) and Nd(III) Ions.

ACS Omega

September 2025

Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.

We report the hydrothermal syntheses and structural and spectroscopic characterization of two new uranium oxide hydrate frameworks (UOHFs) with either Pr or Nd ions, Pr(HO)[(UO)UO(OH)] () or Nd(HO)[(UO)UO(OH)] (). Both UOHFs crystallize in the orthorhombic 222 space group and display needle crystal morphologies. Their crystal structures are composed of β-UO-type layers connected by double uranium polyhedra to form the frameworks, with disordered Pr/Nd ions within the framework channels, as revealed by synchrotron single-crystal XRD.

View Article and Find Full Text PDF

Swiss national radon database: impact of building and environmental factors.

Front Public Health

September 2025

Western Switzerland Center for Indoor Air Quality and Radon (croqAIR), Transform Institute, School of Engineering and Architecture of Fribourg, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland.

Since the 1980s, radon has been recognized as a public health concern in Switzerland and internationally. In an effort to more accurately estimate the number of lung cancer cases attributable to radon exposure, Swiss health authorities initiated the creation of radon measurements into a centralized national database. As of 2025, this database comprises approximately 300,000 measurements from 150,000 buildings across the country.

View Article and Find Full Text PDF

The distribution of groundwater uranium in Chintamani village, Karnataka, India.

F1000Res

September 2025

Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India.

Background: Chintamani village, Chikkaballapura district, Karnataka, India was found to possess high aquifer uranium concentrations. Geologically, Chintamani village is located on bedrock that is rich in elements like potassium (K) that naturally contain high levels of radioactive elements, such as uranium and thorium, due to the presence of alkali-feldspar granites and gneisses. Aquifer depletion has caused the concentration of these elements in groundwater to increase over time, posing a potential health hazard to the residents of Chintamani village.

View Article and Find Full Text PDF

Focus on China's non-ferrous metal industry: Emission characteristics of heavy metals and their impacts on water, soil, and air.

J Hazard Mater

September 2025

Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; National Key Laboratory of Uranium Resources Prospecting and Nuclear Remote Sensing, East China University of Technology, Nanchang 330000, China.

Despite China being the world's largest producer of non-ferrous metals, a comprehensive understanding of heavy metal pollution from this industry is still lacking. This study examines the spatial coupling between heavy metal (Cd, Hg, As, Pb, and Cr) emission hotspots in China's non-ferrous metal mining industry (NFMMI), non-ferrous metal smelting and processing industry (NFMSPI) and environmental media- sensitive hotspots (water body density, cultivated land concentration, and atmospheric PM2.5) to characterize the multi-media pollution risks.

View Article and Find Full Text PDF

Chemical alteration of UO micro-particles in model lung systems.

J Hazard Mater

August 2025

Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00560, Finland. Electronic address:

Uranium dioxide (UO) particles can be released from mines, nuclear fuel manufacturing, reactor accidents, and weapons use. They pose inhalation risks, yet their behavior in the human lung remains poorly understood. This study investigates the long-term chemical alteration and dissolution of µm-sized UO particles in two model lung fluids: Simulated Lung Fluid (SLF) and Artificial Lysosomal Fluid (ALF), representing extracellular and intracellular lung environments, respectively.

View Article and Find Full Text PDF