98%
921
2 minutes
20
In chromaffin cells, the kinetics of fusion pore expansion vary depending on which synaptotagmin isoform (Syt-1 or Syt-7) drives release. Our recent studies have shown that fusion pores of granules harboring Syt-1 expand more rapidly than those harboring Syt-7. Here we sought to define the structural specificity of synaptotagmin action at the fusion pore by manipulating the Ca-binding C2B module. We generated a chimeric Syt-1 in which its C2B Ca-binding loops had been exchanged for those of Syt-7. Fusion pores of granules harboring a Syt-1 C2B chimera with all three Ca-binding loops of Syt-7 (Syt-1:7C2B) exhibited slower rates of fusion pore expansion and neuropeptide cargo release relative to WT Syt-1. After fusion, this chimera also dispersed more slowly from fusion sites than WT protein. We speculate that the Syt-1:7 C2B and WT Syt-1 are likely to differ in their interactions with Ca and membranes. Subsequent in vitro and in silico data demonstrated that the chimera exhibits a higher affinity for phospholipids than WT Syt-1. We conclude that the affinity of synaptotagmin for the plasma membrane, and the rate at which it releases the membrane, contribute in important ways to the rate of fusion pore expansion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905296 | PMC |
http://dx.doi.org/10.1091/mbc.E17-11-0623 | DOI Listing |
ACS Sens
September 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Dopamine (DA) signaling is essential for neurodevelopment and is particularly sensitive to disruption during adolescence. Protein restriction (PR) can impair DA dynamics, yet mechanistic insights remain limited due to challenges in real-time neurochemical sensing. Here, we present aptCFE, a robust implantable aptamer-based sensor fabricated via a reagent-free, 3 min electrochemical conjugation (E-conjugation) using amine-quinone chemistry.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Traditional Chinese Medicine Rehabilitation, Jiangbei Branch of The First Hospital Affiliated to Army Medical University (Third Military Medical University), Chongqing, China.
Background: Complex interbody fusion remains challenging, while traditional surgical instruments are not suitable for complex spinal deformities. Porous tantalum (Ta) has excellent osteogenic properties, but there is currently a lack of research on its application in cervical thoracic interbody fusion.
Objective: To introduce the application of selective electron beam melting (SEBM) 3D printing technology in customized porous Ta vertebral fusion implants and evaluate its mid-term clinical efficacy in complex cervical thoracic fusion surgery.
Bioessays
September 2025
Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
The timely release of chemical messengers is a crucial step in cell-to-cell communication. Does this release occur as a passive diffusion from the donor membrane or it is actively regulated? A series of studies indicated that chemical messengers' secretion is "sub-quantal". This mode of secretion demands a strongly regulated release mechanism and calls for a thorough characterization of the release sites.
View Article and Find Full Text PDFUltrasonics
August 2025
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Singapore Centre for 3D Printing (SC3DP), Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
The designability of Laser powder bed fusion (LPBF) technology for material microstructure enables the fabrication of high-performance additive manufactured (AM) components. However, challenges remain due to inevitable pores induced by laser shock and parameter fluctuations during manufacturing, which introduce uncertainties in both porosity and microstructures. In this work, ultrasonic bulk wave is employed to evaluate porosity within the context of coupled pore-microstructure effects.
View Article and Find Full Text PDFbioRxiv
August 2025
National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892.
The ATPase N-ethylmaleimide-sensitive factor (NSF), known for disassembling SNARE complexes, plays key roles in neurotransmitter release, neurotransmitter (AMPA, GABA, dopamine) receptor trafficking, and synaptic plasticity, and its dysfunction or mutation is linked to neurological disorders. These roles are largely attributed to SNARE-mediated exocytosis. Here, we reveal a previously unrecognized role for NSF: mediating diverse modes of endocytosis-including slow, fast, ultrafast, overshoot, and bulk-by driving closure of both fusion and fission pores.
View Article and Find Full Text PDF