A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Preparation and Characterization of Nanosized Bi-Doped SnO₂/Reduced Graphene Oxide 3D Hybrids for Visible-Light-Driven Photocatalysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The nanosized Bi-doped SnO2/reduced graphene oxide 3D hybrids have been synthesized via one-step hydrothermal method. The structures, morphologies, photocatalytic activities of the as-prepared samples were discussed, respectively. The formation mechanism of the as-prepared hybrids was also proposed. Experimental results indicated that the usage amount of Bi2Sn2O7 obviously affected the photocatalytic performance of the as-prepared products. When it was 450 mg, the as-prepared sample possessed the band gap energy of 1.9 eV and the photocatalytic efficiency of 90% in 210 min for degradation of rhodamine B solution. In addition, triethylene tetramine and the as-prepared carbon hydrogel could act as reductant to synergistically reduce Bi2Sn2O7 into Bi-doped SnO2 particles during the formation of the hybrids.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2018.15325DOI Listing

Publication Analysis

Top Keywords

nanosized bi-doped
8
graphene oxide
8
oxide hybrids
8
as-prepared
5
preparation characterization
4
characterization nanosized
4
bi-doped sno₂/reduced
4
sno₂/reduced graphene
4
hybrids
4
hybrids visible-light-driven
4

Similar Publications