Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). FUS is a multifunctional protein involved in the biogenesis and activity of several types of RNAs, and its role in the pathogenesis of ALS may involve both direct effects of disease-associated mutations through gain- and loss-of-function mechanisms and indirect effects due to the cross talk between different classes of FUS-dependent RNAs. To explore how FUS mutations impinge on motor neuron-specific RNA-based circuitries, we performed transcriptome profiling of small and long RNAs of motor neurons (MNs) derived from mouse embryonic stem cells carrying a FUS-P517L knock-in mutation, which is equivalent to human FUS-P525L, associated with a severe and juvenile-onset form of ALS. Combining ontological, predictive and molecular analyses, we found an inverse correlation between several classes of deregulated miRNAs and their corresponding mRNA targets in both homozygous and heterozygous P517L MNs. We validated a circuitry in which the upregulation of miR-409-3p and miR-495-3p, belonging to a brain-specific miRNA subcluster implicated in several neurodevelopmental disorders, produced the downregulation of Gria2, a subunit of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor with a significant role in excitatory neurotransmission. Moreover, we found that FUS was involved in mediating such miRNA repression. Gria2 alteration has been proposed to be implicated in MN degeneration, through disturbance of Ca homeostasis, which triggers a cascade of damaging "excitotoxic" events. The molecular cross talk identified highlights a role for FUS in excitotoxicity and in miRNA-dependent regulation of Gria2. This circuitry also proved to be deregulated in heterozygosity, which matches the human condition perfectly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132778PMC
http://dx.doi.org/10.1007/s12035-018-0884-4DOI Listing

Publication Analysis

Top Keywords

als fus
8
motor neurons
8
cross talk
8
fus
6
regulatory circuitry
4
gria2
4
circuitry gria2
4
gria2 mir-409
4
mir-409 mir-495
4
als
4

Similar Publications

Aging is a major risk factor for neurodegenerative diseases associated with protein aggregation, including Huntington's disease and amyotrophic lateral sclerosis (ALS). Although these diseases involve different aggregation-prone proteins, their common late onset suggests a link to converging changes resulting from aging. In this study, we found that age-associated hyperactivation of EPS8/RAC signaling in Caenorhabditis elegans promotes the pathological aggregation of Huntington's disease-related polyglutamine repeats and ALS-associated mutant FUS and TDP-43 variants.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is still a heterogeneous neurodegenerative disorder that can be identified clinically and biologically, without a strong set of biomarkers that can adequately measure its fast rate of progression and molecular heterogeneity. In this review, we intend to consolidate the most relevant and timely advances in ALS biomarker discovery, in order to begin to bring molecular, imaging, genetic, and digital areas together for potential integration into a precision medicine approach to ALS. Our goal is to begin to display how several biomarkers in development (e.

View Article and Find Full Text PDF

Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization-spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) as progressive breakdowns of interpretive cellular logic, rather than mere terminal consequences of protein aggregation or synaptic attrition. The discussion aims to provide a detailed mapping of how critical signaling pathways-including PI3K-AKT-mTOR, MAPK, Wnt/β-catenin, and integrated stress response cascades-undergo spatial and temporal disintegration.

View Article and Find Full Text PDF

Activation of polo-like kinase 1 correlates with selective motor neuron vulnerability in familial ALS.

Cell Rep

August 2025

Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, Rostock University Medical Center, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock Univer

Mutations in the Fused in Sarcoma (FUS) gene cause familial amyotrophic lateral sclerosis (ALS), characterized by selective degeneration of spinal motor neurons (sMNs) with relative sparing of cortical neurons (CNs). The mechanisms underlying this cell-type vulnerability remain unclear. Here, we compare CNs and sMNs derived from FUS-ALS models to assess differential responses to FUS mutations.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by the death of motor neurons in the spinal cord and brain regions, leading to a reduced survival rate in patients. Nearly 20 gene mutations are associated with ALS, with SOD1, FUS, TARDBP, and C9orf72 mutations being more common. Ninety percent of ALS cases are related to sporadic ALS, while the remaining 10 % are associated with familial ALS.

View Article and Find Full Text PDF