98%
921
2 minutes
20
We study the light-trapping properties of surface textures generated by a bottom-up approach, which utilizes monolayers of densely deposited nanospheres as a template. We demonstrate that just allowing placement disorder in monolayers from identical nanospheres can already lead to a significant boost in light-trapping capabilities. Further absorption enhancement can be obtained by involving an additional nanosphere size species. We show that the Power Spectral Density provides limited correspondence to the diffraction pattern and in turn to the short-circuit current density enhancement for large texture modulations. However, in predicting the optimal nanosphere size distribution, we demonstrate that full-wave simulations of just a c-Si semi-infinite halfspace at a single wavelength in the range where light trapping is of main importance is sufficient to provide an excellent estimate. The envisioned bottom-up approach can thus reliably provide good light-trapping surface textures even with simple nanosphere monolayer templates defined by a limited number of control parameters: two nanosphere radii and their occurrence probability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.00A111 | DOI Listing |
Anal Chem
September 2025
Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States.
Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).
View Article and Find Full Text PDFLangmuir
September 2025
Product & Process Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands.
Noble metal nanoparticles (NPs), particularly platinum (Pt), are widely used in heterogeneous catalysis due to their exceptional activity. However, controlling their size and preventing sintering during synthesis remains a major challenge, especially when aiming for high dispersion and stability on supports such as graphene. Atomic layer deposition (ALD) has emerged as a promising method to address these issues, yet conventional processes often lead to broad particle size distributions (PSDs).
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Biotechnology, Graduate School of Engineering, The University of Osaka, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
During brewing processes, proteins such as lipid transfer protein 1 (LTP1) are exposed to high temperatures, which later affects the beer foam properties. To develop high-quality beer, it is therefore essential to understand the protein chemical modifications and structural alternations induced by the high temperatures and their impact on beer foam. This study characterizes heat-induced chemical modifications and changes in the molecular size distribution and structure of LTP1 and its lipid-bound isoform, LTP1b, using size-exclusion chromatography and reverse-phase chromatography/mass spectrometry.
View Article and Find Full Text PDFCrit Care Explor
September 2025
Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Professions, Gainesville, FL.
Objectives Background: Monocyte anisocytosis (monocyte distribution width [MDW]) has been previously validated to predict sepsis and outcome in patients presenting in the emergency department and mixed-population ICUs. Determining sepsis in a critically ill surgical/trauma population is often difficult due to concomitant inflammation and stress. We examined whether MDW could identify sepsis among patients admitted to a surgical/trauma ICU and predict clinical outcome.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan.
This study introduces the Wrapped Epanechnikov Exponential Distribution (WEED), a novel circular distribution derived from the Epanechnikov exponential distribution. The probability density function and cumulative distribution function are presented, together with a comprehensive analysis of its properties and parameters, including the characteristic function and trigonometric moments. Parameters are estimated using maximum likelihood estimation (MLE).
View Article and Find Full Text PDF