Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting approximately one-percent of the population over the age of sixty. Although many animal models have been developed to study this disease, each model presents its own advantages and caveats. A unique model has arisen to study the role of alpha-synuclein (aSyn) in the pathogenesis of PD. This model involves the conversion of recombinant monomeric aSyn protein to a fibrillar form-the aSyn pre-formed fibril (aSyn PFF)-which is then injected into the brain or introduced to the media in culture. Although many groups have successfully adopted and replicated the aSyn PFF model, issues with generating consistent pathology have been reported by investigators. To improve the replicability of this model and diminish these issues, The Michael J. Fox Foundation for Parkinson's Research (MJFF) has enlisted the help of field leaders who performed key experiments to establish the aSyn PFF model to provide the research community with guidelines and practical tips for improving the robustness and success of this model. Specifically, we identify key pitfalls and suggestions for avoiding these mistakes as they relate to generating the aSyn PFFs from monomeric protein, validating the formation of pathogenic aSyn PFFs, and using the aSyn PFFs in vivo or in vitro to model PD. With this additional information, adoption and use of the aSyn PFF model should present fewer challenges, resulting in a robust and widely available model of PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004926PMC
http://dx.doi.org/10.3233/JPD-171248DOI Listing

Publication Analysis

Top Keywords

asyn pff
12
pff model
12
asyn pffs
12
model
11
asyn
10
parkinson's disease
8
best practices
4
practices generating
4
generating alpha-synuclein
4
alpha-synuclein pre-formed
4

Similar Publications

Alpha-synuclein (aSyn)-related pathology crucially contributes to the pathogenesis of Parkinson's disease, a frequent and incurable neurodegenerative disease characterized by progressive motor and non-motor symptoms. Anxiety and fear- related neuropsychiatric symptoms develop frequently and early in the disease, but a lack of understanding of pathogenesis hampers rational therapy. This study aimed to decipher whether aSyn pathology in the basolateral amygdala (BLA) is causative of fear and anxiety.

View Article and Find Full Text PDF

Despite known sex differences in human synucleinopathies such as Parkinson's disease, the impact of sex on alpha-synuclein pathology in mouse models has been largely overlooked. To address this need, we examine sex differences in whole brain signatures of neurodegeneration due to aSyn toxicity in the M83 mouse model using longitudinal magnetic resonance imaging (MRI; T1-weighted; 100 μm isotropic voxel; -7, 30, 90 and 120 days post-injection [dpi]; n ≥ 8 mice/group/sex/time point). To initiate aSyn spreading, M83 mice are inoculated with recombinant human aSyn preformed fibrils (Hu-PFF) or phosphate buffered saline in the right striatum.

View Article and Find Full Text PDF

α-Synuclein (aSyn) accumulation within the extra-nigral neuronal populations in the brainstem, including the gigantocellular nuclei (GRN/Gi) of reticular formation, is a recognized feature during the prodromal phase of Parkinson disease (PD). Accordingly, there is a burgeoning interest in animal model development for understanding the pathological significance of extra-nigral synucleinopathy, in relation to motor and/or non-motor symptomatology in PD. Here, we report an experimental paradigm for the induction of aSyn aggregation in brainstem, with stereotaxic delivery of pre-formed fibrillar (PFF) aSyn in the pontine GRN of transgenic mice expressing the mutant human Ala53Thr aSyn (M83 line).

View Article and Find Full Text PDF

Cortical dysfunction is increasingly recognized as a major contributor to the non-motor symptoms associated with Parkinson's disease (PD) and other synucleinopathies. Although functional alterations in cortical circuits have been observed in preclinical PD models, the underlying molecular mechanisms are unclear. To bridge this knowledge gap, we investigated tissue-level changes in the cortices of rats and mice treated with alpha-synuclein (aSyn) seeds using a multi-omics approach.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how pathological aggregation of α-synuclein (aSYN) contributes to neuron dysfunction in Parkinson's disease, focusing on mitochondrial impact.
  • Researchers injected pre-formed aSYN fibrils into specific mouse brain regions and employed various techniques to analyze the effects 12 weeks later.
  • Results showed that aSYN accumulation led to neuronal loss, reduced mitochondrial function, increased oxidative stress, and compromised energy production in dopaminergic neurons, suggesting mitochondrial disruption as an early event in the disease process.
View Article and Find Full Text PDF