Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low bioavailability and high binding affinity to plasma proteins led to the difficulty for the quantitative detection of lithospermate B (LSB) in plasma. This study aimed to develop a protocol for detecting LSB in plasma. A method was employed to quantitatively detect LSB of 5-500 ng/mL by LC/MS spectrometry in multi reaction monitoring mode via monitoring two major fragments with m/z values of 519 and 321 in the MS2 spectrum. To set up an adequate extraction solution to release LSB captured by plasma proteins, recovery yields of LSB extracted from rat plasma acidified by formic acid or HCl in the presence or absence of EDTA and caffeic acid were detected and compared using the above quantitative method. High recovery yield (∼90%) was achieved when LSB (5-500 ng/mL) mixed in rat plasma was acidified by HCl (5 M) in the presence of EDTA (0.5 M) and caffeic acid (400 μg/mL). The lower limit of detection and the lower limit of quantification for LSB in the spiked plasma were calculated to be 1.8 and 5.4 ng/mL, respectively. Good accuracy (within ±10%) and precision (less than 10%) of intra- and inter-day quality controlled samples were observed. Oral bioavailability of LSB in rat model was detected via this optimized extraction method, and the maximum plasma concentration (C) was found to be 1034.3 ± 510.5 μg/L at t around 10 min, and the area under the plasma concentration-time curve (AUC) was 1414.1 ± 851.2 μg·h/L.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332659PMC
http://dx.doi.org/10.1016/j.jfda.2017.06.003DOI Listing

Publication Analysis

Top Keywords

rat plasma
12
plasma
10
detection lithospermate
8
multi reaction
8
reaction monitoring
8
monitoring mode
8
plasma proteins
8
lsb
8
lsb plasma
8
lsb 5-500 ng/ml
8

Similar Publications

High-fat (HF) diets contribute to obesity, insulin resistance, fatty liver, gut microbiota dysbiosis, oxidative stress, and low-grade chronic inflammation. This study evaluated the preventive effects of dietary Type 2 resistant starch (RS2) from high-amylose maize and low-dose d-fagomine (FG) from buckwheat on these metabolic disturbances. Male Wistar-Kyoto rats (9-10 weeks old) were assigned to four diet groups for 10 weeks: standard (STD) diet, HF diet (45% kcal from fat), HF + RS diet (15% RS2), and HF + FG diet (0.

View Article and Find Full Text PDF

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF

Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF

Multiple exogenous supplements to achieve ketosis using the oral route have been developed to elevate blood BHB levels on demand and in a controllable fashion. The focus is now shifting to evaluating these supplements as potential therapeutic agents and developing strategies to not only achieve ketosis but also maintain it. One such strategy is to administer these as a continuous IV infusion.

View Article and Find Full Text PDF