Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Pre-eclampsia (PE) is one of the most common reason for high morbidity and mortality of maternal and prenatal infants. Production from oxidative stress results in maternal ROS system and anti-oxidation defense system imbalance to promote tissue ischemia and hypoxia, and ultimately impairs the maternal organs and placenta. Our previous study showed that exogenous Alpha-1-antitrypsin (AAT) and overexpression of AAT in umbilical vein cell (HUVEC) hypoxia-reoxygenation model could increase the activity of antioxidant enzymes, and played a protective role in preeclampsia animal model. In this study, we aim to investigate the underlying mechanism by which AAT prevents PE progress. Whole-exome sequencing was performed to screen the genes altered by AAT. We found that AAT knockdown altered the expression of Smad family and Id family genes, and further demonstrated that AAT positively regulated Id4 expression through activating Smad2. Reduced Id4 expression and Smad2 phosphorylation were observed in preeclampsia animal model, which was also confirmed in human placenta tissues. In addition, AAT protected HUVEC cells from hypoxia/reoxygenation injury and relieved preeclampsia symptoms through Smad2/Id4 axis. Our data illustrate AAT/Smad2/Id4 axis is an important mediator of placenta and vascular function during pregnancy. These findings provide insights into events governing pregnancy-associated disorders, such as preeclampsia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762569 | PMC |
http://dx.doi.org/10.18632/oncotarget.22949 | DOI Listing |