Stability and Performance of CsPbIBr Thin Films and Solar Cell Devices.

ACS Appl Mater Interfaces

Stephenson Institute for Renewable Energy/Department of Physics, University of Liverpool, Liverpool L69 7ZF, United Kingdom.

Published: January 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this manuscript, the inorganic perovskite CsPbIBr is investigated as a photovoltaic material that offers higher stability than the organic-inorganic hybrid perovskite materials. It is demonstrated that CsPbIBr does not irreversibly degrade to its component salts as in the case of methylammonium lead iodide but instead is induced (by water vapor) to transform from its metastable brown cubic (1.92 eV band gap) phase to a yellow phase having a higher band gap (2.85 eV). This is easily reversed by heating to 350 °C in a dry environment. Similarly, exposure of unencapsulated photovoltaic devices to water vapor causes current (J) loss as the absorber transforms to its more transparent (yellow) form, but this is also reversible by moderate heating, with over 100% recovery of the original device performance. NMR and thermal analysis show that the high band gap yellow phase does not contain detectable levels of water, implying that water induces the transformation but is not incorporated as a major component. Performances of devices with best efficiencies of 9.08% (V = 1.05 V, J = 12.7 mA cm and FF = 68.4%) using a device structure comprising glass/ITO/c-TiO/CsPbIBr/Spiro-OMeTAD/Au are presented, and further results demonstrating the dependence of the performance on the preparation temperature of the solution processed CsPbIBr films are shown. We conclude that encapsulation of CsPbIBr to exclude water vapor should be sufficient to stabilize the cubic brown phase, making the material of interest for use in practical PV devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b14039DOI Listing

Publication Analysis

Top Keywords

water vapor
12
band gap
12
yellow phase
8
cspbibr
5
water
5
stability performance
4
performance cspbibr
4
cspbibr thin
4
thin films
4
films solar
4

Similar Publications

Tuning the Electrical Property and Electronic Band Structures of Organic Semiconductors via Surface Tension.

J Phys Chem Lett

September 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.

View Article and Find Full Text PDF

To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.

View Article and Find Full Text PDF

Photoelectron angular distributions are reported for a series of aqueous potassium carboxylate solutions, ranging from bulk-solvated to strongly surface-active species. The quantitative information determined from this work demonstrates how the measured photoelectron angular distributions are influenced by the ions' increasing propensity for the surface in aqueous solutions. Our study provides insight into the relative depth and location of the carboxylate functional group, which is valuable for investigating the adsorption of organic molecules at liquid-vapor interfaces.

View Article and Find Full Text PDF

Flexible metal-organic frameworks (MOFs) have emerged as a new generation of porous materials and are considered for various applications such as sensing, water or gas capture, and water purification. MIL-88 A (Fe) is one of the earliest and most researched flexible MOFs, but to date, there is a lack in the structural aspects that govern its dynamic behaviour. Here, we report the first crystal structure of DMF-solvated MIL-88 A and investigate the impact of real structure effects on the dynamic behaviour of MIL-88 A (Fe), particularly upon water adsorption.

View Article and Find Full Text PDF

Cleaning: A Retail and Foodservice Perspective.

Food Prot Trends

June 2025

Dept. of Food, Nutrition, and Packaging Sciences, 220 Poole Agriculture Center, Clemson University, Clemson, SC 29634, USA.

Surface sanitation is used to mitigate the transmission of infectious agents and is the collective process of washing a surface then rinsing it with potable water to remove debris and residual cleaning agent. If necessary and depending on surface type, contamination event, or regulatory requirement, an antimicrobial agent (chemical sanitizer or disinfectant) registered with the Environmental Protection Agency or heat (steam or hot water) can be applied to the surface to reduce or inactivate pathogenic microorganisms. The absence of universally defined terms and regulations pertaining to the various stages of surface sanitation has resulted in confusion, potentially leading to inadequate sanitation practices and persistent surface contamination.

View Article and Find Full Text PDF