Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mechanisms by which mitochondrial metabolism supports cancer anabolism remain unclear. Here, we found that genetic and pharmacological inactivation of pyruvate dehydrogenase A1 (PDHA1), a subunit of the pyruvate dehydrogenase complex (PDC), inhibits prostate cancer development in mouse and human xenograft tumor models by affecting lipid biosynthesis. Mechanistically, we show that in prostate cancer, PDC localizes in both the mitochondria and the nucleus. Whereas nuclear PDC controls the expression of sterol regulatory element-binding transcription factor (SREBF)-target genes by mediating histone acetylation, mitochondrial PDC provides cytosolic citrate for lipid synthesis in a coordinated manner, thereby sustaining anabolism. Additionally, we found that PDHA1 and the PDC activator pyruvate dehydrogenase phosphatase 1 (PDP1) are frequently amplified and overexpressed at both the gene and protein levels in prostate tumors. Together, these findings demonstrate that both mitochondrial and nuclear PDC sustain prostate tumorigenesis by controlling lipid biosynthesis, thus suggesting this complex as a potential target for cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5810912PMC
http://dx.doi.org/10.1038/s41588-017-0026-3DOI Listing

Publication Analysis

Top Keywords

pyruvate dehydrogenase
16
prostate cancer
12
dehydrogenase complex
8
lipid biosynthesis
8
nuclear pdc
8
pdc
6
prostate
5
cancer
5
compartmentalized activities
4
pyruvate
4

Similar Publications

Dichloroacetate (DCA), as a pan-inhibitor of pyruvate dehydrogenase kinase, plays a crucial role in energy metabolism and mitochondrial function. DCA decreases lactic acid synthesis, enhances mitochondrial oxidative phosphorylation, and regulates aerobic glycolysis. During the last decade, more and more studies have found that disorders of energy metabolism and mitochondrial dysfunction play a pivotal role in the development and progression of various diseases, and the role of DCA in cancer, metabolic diseases, and inflammatory diseases has been extensively explored in both basic and clinical studies.

View Article and Find Full Text PDF

Background: Emerging evidence indicates that metformin-based combination therapy may offer better glycemic control and improved tolerability compared to diabetes monotherapy. Building on this, vitamin D was considered a potential adjunct to metformin for managing type 2 diabetes. Although vitamin D is primarily recognized for its role in calcium regulation, it also appears to influence glucose metabolism and other non-skeletal functions.

View Article and Find Full Text PDF

Cisplatin resistance significantly limits the efficacy of chemotherapy in non-small cell lung cancer, necessitating the development of new strategies to overcome this barrier. This in vitro study aimed to elucidate the mechanism by which β-Ele reverses cisplatin resistance in lung adenocarcinoma cells via the LINC00511-mediated glycolysis and Wnt/β-catenin signaling pathways. The cisplatin-resistant human lung adenocarcinoma cell line (A549/DDP), with either LINC00511 overexpression or knockdown, was established through plasmid transfection.

View Article and Find Full Text PDF

The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities.

View Article and Find Full Text PDF

Purpose Of Review: To synthesize current knowledge on the genetic, immunopathogenic, and clinical presentations of systemic sclerosis (SSc) and primary biliary cholangitis (PBC) with a focus on their co-occurrence as a clinically relevant overlap syndrome. This narrative review summarizes preclinical and clinical studies addressing SSc-PBC overlap.

Recent Findings: Genomic studies highlight shared susceptibility loci between SSc and PBC.

View Article and Find Full Text PDF