Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Histones organize DNA into chromatin through a variety of processes. Among them, a vast diversity of histone variants can be incorporated into chromatin and finely modulate its organization and functionality. Classically, the study of histone variants has largely relied on antibody-based assays. However, antibodies have a limited efficiency to discriminate between highly similar histone variants.

Results: In this study, we established a mass spectrometry-based analysis to address this challenge. We developed a targeted proteomics method, using selected reaction monitoring or parallel reaction monitoring, to quantify a maximum number of histone variants in a single multiplexed assay, even when histones are present in a crude extract. This strategy was developed on H2A and H2B variants, using 55 peptides corresponding to 25 different histone sequences, among which a few differ by a single amino acid. The methodology was then applied to mouse testis extracts in which almost all histone variants are expressed. It confirmed the abundance profiles of several testis-specific histones during successive stages of spermatogenesis and the existence of predicted H2A.L.1 isoforms. This methodology was also used to explore the over-expression pattern of H2A.L.1 isoforms in a mouse model of male infertility.

Conclusions: Our results demonstrate that targeted proteomics is a powerful method to quantify highly similar histone variants and isoforms. The developed method can be easily transposed to the study of human histone variants, whose abundance can be deregulated in various diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767011PMC
http://dx.doi.org/10.1186/s13072-017-0172-yDOI Listing

Publication Analysis

Top Keywords

histone variants
24
targeted proteomics
12
h2a h2b
8
variants
8
h2b variants
8
histone
8
highly histone
8
reaction monitoring
8
h2al1 isoforms
8
systematic quantitative
4

Similar Publications

Genome-wide association studies (GWAS) relevant to osteoporosis have identified hundreds of loci; however, understanding how these variants influence the phenotype is complicated because most reside in non-coding DNA sequence that serves as transcriptional enhancers and repressors. To advance knowledge on these regulatory elements in osteoclasts (OCs), we performed Micro-C analysis, which informs on the genome topology of these cells and integrated the results with transcriptome and GWAS data to further define loci linked to BMD. Using blood cells isolated from 4 healthy participants aged 31-61 yr, we cultured OC in vitro and generated a Micro-C chromatin conformation capture dataset.

View Article and Find Full Text PDF

Meiotic crossovers promote correct chromosome segregation and the shuffling of genetic diversity. However, the measurement of crossovers remains challenging, impeding our ability to decipher the molecular mechanisms that are necessary for their formation and regulation. Here we demonstrate a novel repurposing of the single-nucleus Assay for Transposase Accessible Chromatin with sequencing (snATAC-seq) as a simple and high-throughput method to identify and characterize meiotic crossovers from haploid testis nuclei.

View Article and Find Full Text PDF

ATPase-deficient CHD7 disease variant disrupts neural development via chromatin dysregulation.

J Genet Genomics

September 2025

Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Sh

Chromodomain helicase DNA binding protein 7 (CHD7), an ATP-dependent chromatin remodeler, plays versatile roles in neurodevelopment. However, the functional significance of its ATPase/nucleosome remodeling activity remains incompletely understood. Here, we generate genetically engineered mouse embryonic stem cell lines harboring either an inducible Chd7 knockout or an ATPase-deficient missense variant identified in individuals with CHD7-related disorders.

View Article and Find Full Text PDF

In most solid tumors, hypoxia constitutes a defining microenvironmental feature that reprograms malignant cells into a highly metastatic state by driving cellular plasticity and exacerbating chromosomal instability (CIN). However, the mechanisms by which cancer cells concurrently co-opt these elements of hypoxic adaptation to promote metastasis remains poorly understood. Here, we report that hypoxia promotes metastasis by suppressing the JmjC-containing histone lysine demethylase Kdm8.

View Article and Find Full Text PDF

Maintaining the epigenetic identity of centromeres is essential to prevent genome instability. Centromeres are epigenetically defined by the histone H3 variant CENP-A. Prior work in human centromeres has shown that CENP-A is associated with regions of hypomethylated DNA located within large arrays of hypermethylated repeats, but the functional importance of these DNA methylation (DNAme) patterns remains poorly understood.

View Article and Find Full Text PDF