98%
921
2 minutes
20
A library of N-substituted oligopyrrolamides was designed to modulate the aggregation kinetics of islet amyloid polypeptide (IAPP). IAPP is a hormonal peptide, co-secreted with insulin in the pancreatic β-cells. IAPP samples a variety of conformations, starting from a native random coil to membrane-associated α-helical intermediates and eventually terminates in the amyloid plaques rich in β-sheet structures. A growing body of evidence suggests that membrane bound α-helical intermediates are the key cytotoxic species that impair the functionality and viability of β-cells and contribute to the onset of type 2 diabetes mellitus (DM2). The N-substituted oligopyrrolamides were screened against the aggregation of IAPP using amyloid kinetic assays. A tripyrrole, ADH-101, was the most effective antagonist of IAPP fibrillation in a physiologically relevant lipid membrane system as well as under de novo conditions. ADH-101 induces/stabilizes a secondary structure in IAPP which potentially affects its downstream functions. ADH-101 efficiently affects IAPP-mediated liposome leakage and cell toxicity in insulin secreting cells. ADH-101 inhibits the elongation process potentially binding to the monomeric IAPP and attenuating its access to the preformed fibers. More importantly, oligopyrrolamides are better inhibitors of IAPP aggregation than analogous oligopyridylamides and have more desirable biological properties reflected by their partition coefficients. In essence, an oligopyrrolamide scaffold has been designed which modulates the membrane bound helical intermediates of IAPP and affects their downstream functions such as oligomerization, membrane poration, and cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7ob02910a | DOI Listing |
J Biosci
September 2025
Cell Metabolism Lab (GA-08), Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru 560012, India.
In most individuals with type 2 diabetes mellitus (T2DM), aggregation of amylin or islet amyloid polypeptide (IAPP) leads to β-cell apoptosis, impairs glucose-stimulated insulin secretion, and causes islet disorganisation (Cooper . 1987; Westermark and Westermark 2000). Amylin is sorted within the immature secretory granules (ISGs) of pancreatic β-cells and co-secreted with insulin upon nutrient stimulation to regulate metabolism.
View Article and Find Full Text PDFNat Commun
August 2025
Institute of Experimental Physics I and Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany.
Rabi splitting is a defining signature of strong light-matter interaction, emerging when a two-level system is resonantly driven by an optical field, resulting in a spectral doublet separated by the Rabi energy. In solid-state systems, Rabi splitting occurs at exciton resonances, where it is shaped by many-body interactions intrinsic to the material. Here, we investigate the Rabi splitting dynamics in two paradigmatic two-dimensional semiconductors: a hBN-encapsulated MoSe monolayer and a (Ga,In)As multiple quantum well structure.
View Article and Find Full Text PDFArch Biochem Biophys
August 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
Lysine succinylation is a major post-translational modification affecting diverse proteins, and its excessive occurrence can lead to protein misfolding and aggregation-hallmarks of various proteinopathies, such as amyloid-β and Tau tangle formation in Alzheimer's disease and islet amyloid polypeptide aggregation in type 2 diabetes. Here, we investigated the inhibitory effects of bile acid metabolites (deoxycholic acid, glycocholic acid, and taurocholic acid sodium) and natural polyphenols (anthocyanin and salidroside) on succinylation and succinylation-induced amyloid aggregation. Succinylation levels were evaluated using the ninhydrin assay before and after treatment, and aggregation behavior and structural alterations were characterized by SDS-PAGE, inverted fluorescence microscopy, and intrinsic fluorescence spectroscopy.
View Article and Find Full Text PDFJ Mol Biol
August 2025
Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden. Electronic address:
In the pursuit of potential therapeutic agents for type 2 diabetes, non-amyloidogenic forms of the human Islet Amyloid Polypeptide (hIAPP) containing site-specific mutations are of significant interest. In the present study, we dissect the three proline mutations present in the core region of the non-amyloidogenic rat IAPP into single-point mutations at A25P, S28P, and S29P sites. We apply high-resolution cryo-electron microscopy and solve the structures of 6 polymorphs formed by these mutants, revealing the peptide's self-assembly patterns and identifying critical interactions that reinforce these structures in the presence of the β-sheet breaker.
View Article and Find Full Text PDFSci Signal
August 2025
Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
Three amylin receptors (AMYRs) mediate the metabolic actions of the peptide hormone amylin and are drug targets for diabetes and obesity. AMYR, AMYR, and AMYR are heterodimers consisting of the calcitonin receptor (CTR), a G protein-coupled receptor, paired with a RAMP1, RAMP2, or RAMP3 accessory subunit, respectively, which increases amylin potency. Here, we found that the AMYRs had distinct basal subunit equilibria that were modulated by peptide agonists and determined the extent of cAMP signaling downstream of receptor activation.
View Article and Find Full Text PDF