Multi-Pharmacophore Modeling of Caspase-3 Inhibitors using Crystal, Dock and Flexible Conformation Schemes.

Comb Chem High Throughput Screen

School of Chemical Sciences, Central University of Gujarat, Gandhinagar - 382030, Gujarat, India.

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim And Objective: Numerous caspase-3 drug discovery projects were found to have relied on single receptor as the template to recognize most promising small molecule candidates using docking approach. Alternatively, some researchers were contingent upon ligand-based alignment to build up an empirical relationship between ligand functional groups and caspase-3 inhibitory activity quantitatively. To connect both caspase-3 receptor details and its inhibitors chemical functionalities, this study was undertaken to develop receptor- and ligand-pharmacophore models based on different conformational schemes.

Material And Methods: A multi-pharmacophore modeling strategy is carried out based on three conformational schemes of pharmacophore hypothesis generation to screen caspase-3 inhibitors from database. The schemes include (i) flexible (conformations unrestricted or flexible during pharmacophore mapping), (ii) dock (conformations obtained using FlexX docking method) and (iii) crystal (extracted from multiple caspase-3-ligand complexes from PDB repository) conformations of query ligands. The pharmacophore models developed using these conformational schemes were then used to identify probable caspase-3 inhibitors from ZINC database.

Results: We noticed better sensitivity with good specificity measures returned by candidate pharmacophore hypotheses across each conformation type and recognized crucial pharmacophore features that enable caspase-3 binding. Pharmacophore modeling based on flexible conformational scheme indicated that the crystal structure 3KJF (AAAADH) is the best receptor structure to perform receptor-based pharmacophore screening of caspase-3 inhibitors. When multiple crystal structures were included, the hypothesis (HAAA) is more generalized. Superimposition of multiple co-crystal ligands from various caspase-3 PDB entries in crystallographic binding mode revealed similar hypothesis (HAAA). Further, FlexX-guided dock conformations of validation dataset showed that the crystal structure 1RE1 is the best-suited for dock-based pharmacophore models. Database screening using these pharmacophore hypotheses identified N'-[6-(benzimidazol-1-yl)-5-nitro-pyrimidin-4-yl]-4 methylbenzenesulfonohydrazide and 2-nitro-N'-[5-nitro-6-[N'-(p-tolylsulfonyl)hydrazino]pyrimidin-4- yl]benzohydrazide as the probable caspase-3 inhibitors.

Conclusion: N'-[6-(benzimidazol-1-yl)-5-nitro-pyrimidin-4-yl]-4 methylbenzenesulfonohydrazide and 2-nitro-N'-[5-nitro-6-[N'-(p-tolylsulfonyl)hydrazino]pyrimidin-4-yl]benzohydrazide may be tested for caspase-3 inhibition. We believe that potential caspase-3 inhibitors can be recognized efficiently by adapting multi-pharmacophore models in database screening.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1386207321666180102114917DOI Listing

Publication Analysis

Top Keywords

caspase-3 inhibitors
20
caspase-3
12
pharmacophore
9
multi-pharmacophore modeling
8
conformational schemes
8
dock conformations
8
pharmacophore models
8
probable caspase-3
8
pharmacophore hypotheses
8
crystal structure
8

Similar Publications

Background: Hyperthermia (HT), while a cancer treatment approach, isn't always effective alone. Therefore, identifying hyperthermia enhancers is crucial. We demonstrated that Mito-TEMPO ([2-[(1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) amino]-2-oxoethyl]-triphenylphosphanium, MT) acts as a potent thermosensitizer, promoting cell death in human cervical cancer (HeLa) cells.

View Article and Find Full Text PDF

Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.

View Article and Find Full Text PDF

The persistent residual tumor cells that survive after chemotherapy are a major cause of treatment failure, but their survival mechanisms remain largely elusive. These cancer cells are typically characterized by a quiescent state with suppressed activity of MYC and MTOR. We observed that the MYC-suppressed persistent triple-negative breast cancer (TNBC) cells are metabolically flexible and can upregulate mitochondrial oxidative phosphorylation (OXPHOS) genes and respiratory function ("OXPHOS-high" cell state) in response to DNA-damaging anthracyclines such as doxorubicin, but not to taxanes.

View Article and Find Full Text PDF

General control nonderepressible 2 (GCN2; EIF2AK4) is a serine-threonine kinase in the integrated stress response signaling pathway that initiates adaptive responses during nutrient stress conditions. Although pharmacologic inhibition of GCN2 under nutrient stress conditions induces apoptosis and inhibits tumor growth, GCN2 inhibition without nutrient stress has been reported to have no effect on tumor growth. By exploring an array of GCN2 inhibitors, we demonstrate that multiple agents in fact activate GCN2 in biochemical and cell-based assays at low concentrations and inhibit GCN2 at higher concentrations.

View Article and Find Full Text PDF

In this study, we modified ONS-donor tridentate salicylaldimine main ligand-based Pt(II) complexes with monosaccharide functionalized pyridine co-ligand. All these complexes (C1-C12) were prepared in two steps continuous reaction by firstly, abstracting the ancillary chloride of the starting complexes with AgBF and secondly, adding the acetylated β-d-glucose conjugated pyridine. All these complexes were analyzed for their in vitro anticancer potency in human's gastric cancer MKN 45, colon cancer RPMI 4788 and non-small cell lung cancer A549 cells.

View Article and Find Full Text PDF