98%
921
2 minutes
20
Satsuma ( Marc.) is one of the most abundantly produced mandarin varieties of citrus, known for its seedless fruit production and as a breeding parent of citrus. assembly of the heterozygous diploid genome of Satsuma ("Miyagawa Wase") was conducted by a hybrid assembly approach using short-read sequences, three mate-pair libraries, and a long-read sequence of PacBio by the PLATANUS assembler. The assembled sequence, with a total size of 359.7 Mb at the N length of 386,404 bp, consisted of 20,876 scaffolds. Pseudomolecules of Satsuma constructed by aligning the scaffolds to three genetic maps showed genome-wide synteny to the genomes of Clementine, pummelo, and sweet orange. Gene prediction by modeling with MAKER-P proposed 29,024 genes and 37,970 mRNA; additionally, gene prediction analysis found candidates for novel genes in several biosynthesis pathways for gibberellin and violaxanthin catabolism. BUSCO scores for the assembled scaffold and predicted transcripts, and another analysis by BAC end sequence mapping indicated the assembled genome consistency was close to those of the haploid Clementine, pummel, and sweet orange genomes. The number of repeat elements and long terminal repeat retrotransposon were comparable to those of the seven citrus genomes; this suggested no significant failure in the assembly at the repeat region. A resequencing application using the assembled sequence confirmed that both kunenbo-A and Satsuma are offsprings of Kishu, and Satsuma is a back-crossed offspring of Kishu. These results illustrated the performance of the hybrid assembly approach and its ability to construct an accurate heterozygous diploid genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723288 | PMC |
http://dx.doi.org/10.3389/fgene.2017.00180 | DOI Listing |
Biol Open
August 2025
Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
Transgene expression in eHAP cells, a haploid cell line commonly used to generate gene knockouts, is difficult due to its low transfection efficiency and poor expression of integrated transgenes. To enable simple and reliable transgene expression, we engineered insulated integrating plasmids that sustain high levels of transgene expression in eHAP cells, and that can be used in other cell lines. These vectors are compatible with FLP-FRT and piggyBac integration, they flank a gene-of interest bilaterally with tandem cHS4 core insulators, and co-express nuclear-localized blue fluorescent protein for identification of high expressing cells.
View Article and Find Full Text PDFAm J Med Genet A
August 2025
Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Nizon-Isidor syndrome is a rare disorder caused by heterozygous variants in MED12L, with only eight documented cases in the literature. Here, we present three additional cases of this syndrome. Proband 1 was a 7-year-old female who presented with developmental delay, right-leg hemihypertrophy, laryngeal cleft, esotropia, abnormal skin pigmentation, sectoral iris hypopigmentation, dysphagia, periventricular nodular heterotopia, seizures, morbid obesity, and a pelvic kidney.
View Article and Find Full Text PDFGenetics
August 2025
Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
The diploid genome of the fungal pathogen Candida albicans is highly heterozygous, with most allele pairs diverging at either the coding or regulatory level. When faced with selection pressure like antifungal exposure, this hidden genetic diversity can provide a reservoir of adaptive mutations through loss of heterozygosity (LOH) events. Validating the potential phenotypic impact of LOH events observed in clinical or experimentally evolved strains can be difficult due to the challenge of precisely targeting one allele over the other.
View Article and Find Full Text PDFMol Biol Evol
July 2025
College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
Polyploidy is a major driver of speciation and evolutionary changes in plants and animals. Production of unreduced gametes is considered as a main pathway for polyploid formation. However, the precise molecular mechanisms underlying unreduced gamete production, particularly those arising from mitotic defects of spermatogonia (SG)/oogonia, remain poorly understood.
View Article and Find Full Text PDFGenet Mol Biol
August 2025
Universidad de Chile, Instituto de Ciencias Biomédicas, Facultad de Medicina, Programa de Genética Humana, Santiago, Chile.
Crossovers (COs) generate genetic diversity and proper homologous chromosome segregation during meiosis. Mus musculus domesticus, with a diploid number of 2n=40, has 19 autosomal pairs plus one sex chromosome pair all of which are telocentric chromosomes. Frequently exhibits Robertsonian fusions (Rb), which create natural populations with reduced chromosome numbers according to the Rb chromosomes.
View Article and Find Full Text PDF