98%
921
2 minutes
20
Thiothrix nivea is a filamentous sulfur-oxidizing bacterium commonly found in activated sludge. The filament of this bacterium is covered with a sheath. The sheath is an assemblage of macromolecular glucosaminoglucan (GG), [4)-β-d-GlcN-(1 → 4)-β-d-Glc-(1 → ], modified with an unidentified deoxy-sugar at position 3 of Glc. GG was obtained by dialysis after the partial hydrolysis of the sheath. The GG hydrogel was prepared by drying a GG solution. Then, the hydrogel was N-acetylated to prepare a stable hydrogel of N-acetylglucosaminoglucan (NGG), [4)-β-d-GlcNAc-(1 → 4)-β-d-Glc-(1 → ]. The NGG hydrogel was stable in phosphate buffer but was disrupted by lysozyme addition, suggesting that NGG is susceptible to lysozyme degradation and has potential for medical use. The GG solution was N-acetylated to prepare a NGG suspension to confirm enzymatic degradation. The turbidity of the NGG suspension was decreased by lysozyme addition. Sugars released in the reaction mixture were derivatized with 4-aminobenzoic acid ethyl ester (ABEE) followed by HPLC analysis. Two major derivatives were detected, and their concentration was increased in reverse proportion to the turbidity of the reaction mixture. The derivatives were identified as GlcNAc-Glc-GlcNAc-Glc-ABEE and GlcNAc-Glc-ABEE by mass spectrometry. Consequently, NGG was found to be degraded by lysozyme via a mechanism similar to that of chitin degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2017.12.065 | DOI Listing |
Curr Microbiol
September 2025
Department of Health Sciences, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100, Novara, Italy.
A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan.
Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.
View Article and Find Full Text PDFElife
September 2025
Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, United States.
Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.
View Article and Find Full Text PDFACS Synth Biol
September 2025
Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.
Synthetic biology often employs heterologous enzymatic reactions to reprogram cell metabolism or otherwise introduce novel functions. However, precise control of a particular metabolic pathway can be difficult to achieve because cofactors are shared with endogenous enzymes from a common pool. Recently, the use of noncanonical cofactors (NCCs) has emerged as a promising approach to bypass this problem by isolating desired reactions without the need for a physical barrier.
View Article and Find Full Text PDFJCI Insight
September 2025
Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics.
Methylmalonic acidemia (MMA) is a severe metabolic disorder affecting multiple organs because of a distal block in branched-chain amino acid (BCAA) catabolism. Standard of care is limited to protein restriction and supportive care during metabolic decompensation. Severe cases require liver/kidney transplantation, and there is a clear need for better therapy.
View Article and Find Full Text PDF