NitroxylFluor: A Thiol-Based Fluorescent Probe for Live-Cell Imaging of Nitroxyl.

J Am Chem Soc

Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Published: December 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Detection of nitroxyl (HNO), the transient one-electron reduced form of nitric oxide, is a significant challenge owing to its high reactivity with biological thiols (with rate constants as high as 10 M s). To address this, we report a new thiol-based HNO-responsive trigger that can compete against reactive thiols for HNO. This process forms a common N-hydroxysulfenamide intermediate that cyclizes to release a masked fluorophore leading to fluorescence enhancement. To ensure that the cyclization step is rapid, our design capitalizes on two established physical organic phenomena; the alpha-effect and the Thorpe-Ingold effect. Using this new trigger, we developed NitroxylFluor, a selective HNO-responsive fluorescent probe. Treatment of NitroxylFluor with an HNO donor results in a 16-fold turn-on. This probe also exhibits excellent selectivity over various reactive nitrogen, oxygen, and sulfur species and efficacy in the presence of thiols (e.g., glutathione in mM concentrations). Lastly, we successfully performed live cell imaging of HNO using NitroxylFluor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414788PMC
http://dx.doi.org/10.1021/jacs.7b11471DOI Listing

Publication Analysis

Top Keywords

fluorescent probe
8
nitroxylfluor
4
nitroxylfluor thiol-based
4
thiol-based fluorescent
4
probe live-cell
4
live-cell imaging
4
imaging nitroxyl
4
nitroxyl detection
4
detection nitroxyl
4
hno
4

Similar Publications

Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.

View Article and Find Full Text PDF

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF

Visualizing intracellular glycine with two-dye and single-dye ratiometric RNA-based sensors.

Nucleic Acids Res

September 2025

Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, United States.

Glycine is an important metabolite and cell signal in diverse organisms, yet tools to visualize intracellular glycine dynamics have not been developed. In this study, diverse and bright RNA-based glycine biosensors were developed by fusing the architecturally complex glycine riboswitch with Broccoli class fluorogenic aptamers. The brightest sensor with the highest activation, glyS, and its two-dye ratiometric counterpart, Pepper-glyS, allowed for visualization of a drug-induced accumulation of endogenous glycine in live Escherichia colicells.

View Article and Find Full Text PDF