Simulation of Calcium Phosphate Species in Aqueous Solution: Force Field Derivation.

J Phys Chem B

Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR) and Department of Chemistry, Curtin University, P.O. Box U1987, Perth, WA 6845, Australia.

Published: February 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A new force field has been derived for the aqueous calcium phosphate system that aims to reproduce the key thermodynamic properties of the system, including free energies of hydration of the ions and the solubility of the solid mineral phases. Interactions of three phosphate anions (PO, HPO, and HPO) with water were calibrated through comparison with the results obtained from ab initio molecular dynamics using both GGA and hybrid density functional theory with dispersion corrections. In the solid state, the force field has been evaluated by benchmarking against experiment and other existing models and is shown to reproduce the structural and mechanical properties well, despite the primary focus being on thermodynamics. To validate the force field, the thermodynamics of ion pairing for calcium phosphate species in water has been computed and shown to be in excellent agreement with experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b10697DOI Listing

Publication Analysis

Top Keywords

force field
16
calcium phosphate
12
phosphate species
8
simulation calcium
4
phosphate
4
species aqueous
4
aqueous solution
4
force
4
solution force
4
field
4

Similar Publications

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Transposing intensive care innovation from modern warfare to other resource-limited settings.

Eur J Trauma Emerg Surg

September 2025

French Military Medical Service Academy - École du Val-de-Grâce, Paris, France.

Background: Delivering intensive care in conflict zones and other resource-limited settings presents unique clinical, logistical, and ethical challenges. These contexts, characterized by disrupted infrastructure, limited personnel, and prolonged field care, require adapted strategies to ensure critical care delivery under resource-limited settings.

Objective: This scoping review aims to identify and characterize medical innovations developed or implemented in recent conflicts that may be relevant and transposable to intensive care units operating in other resource-limited settings.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

Surfactant-enhanced spontaneous imbibition is a proven method of enhancing oil recovery from shale reservoirs. However, a significant knowledge gap concerning the impact of clay minerals on surfactant-enhanced imbibition in shale reservoirs remains. Therefore, this study first analyzed the mineral composition and pore structure of the shale reservoirs.

View Article and Find Full Text PDF

Coarse-grained (CG) molecular dynamics simulations extend the length and time scales of atomistic simulations by replacing groups of correlated atoms with CG beads. Machine-learned coarse-graining (MLCG) has recently emerged as a promising approach to construct highly accurate force fields for CG molecular dynamics. However, the calibration of MLCG force fields typically hinges on force matching, which demands extensive reference atomistic trajectories with corresponding force labels.

View Article and Find Full Text PDF