98%
921
2 minutes
20
Central nervous system (CNS) neurons fail to regrow injured axons, often resulting in permanently lost neurologic function. Tacrolimus is an FDA-approved immunosuppressive drug with known neuroprotective and neuroregenerative properties in the CNS. However, tacrolimus is typically administered systemically and blood levels required to effectively treat CNS injuries can lead to lethal, off-target organ toxicity. Thus, delivering tacrolimus locally to CNS tissues may provide therapeutic control over tacrolimus levels in CNS tissues while minimizing off-target toxicity. Herein we show an electrospun poly(ester urethane) urea and tacrolimus elastomeric matrix (PEUU-Tac) can deliver tacrolimus trans-durally to CNS tissues. In an acute CNS ischemia model in rat, the optic nerve (ON) was clamped for 10s and then PEUU-Tac was used as an ON wrap and sutured around the injury site. Tacrolimus was detected in PEUU-Tac wrapped ONs at 24h and 14days, without significant increases in tacrolimus blood levels. Similar to systemically administered tacrolimus, PEUU-Tac locally decreased glial fibrillary acidic protein (GFAP) at the injury site and increased growth associated protein-43 (GAP-43) expression in ischemic ONs from the globe to the chiasm, consistent with decreased astrogliosis and increased retinal ganglion cell (RGC) axon growth signaling pathways. These initial results suggest PEUU-Tac is a biocompatible elastic matrix that delivers bioactive tacrolimus trans-durally to CNS tissues without significantly increasing tacrolimus blood levels and off-target toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832622 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2017.11.017 | DOI Listing |
Signal Transduct Target Ther
September 2025
Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.
Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.
View Article and Find Full Text PDFMethods Cell Biol
September 2025
Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM-CSIC/UVA), Valladolid, Spain. Electronic address:
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that is characterized by a severe and progressive demyelinating process. It is considered a neurodegenerative autoimmune disorder driven by immune cell infiltration, overproduction of cytokines and reactive oxygen species (ROS) accumulation that leads to axonal and neuronal injury. Experimental autoimmune encephalomyelitis (EAE) is the most commonly used pre-clinical model of multiple sclerosis (MS), since it resembles many aspects of the human disease.
View Article and Find Full Text PDFNeurochem Int
September 2025
Department of Neurobiology, College of Basic Medicine, Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai 200433, China. Electronic address:
Traditionally, oligodendrocyte precursor cells (OPCs) were primarily regarded for their differentiation potential to mature oligodendrocytes that ensheath central nervous system (CNS) axons through myelin formation. Recent breakthroughs in single-cell sequencing and in vivo imaging technologies have revolutionized our understanding, revealing that OPCs engage in extensive dynamic interactions with diverse CNS cell populations during neurodevelopment, tissue homeostasis maintenance, and pathological microenvironment remodeling. Notably, while OPCs exhibit relatively conserved phenotypic signatures, their functional plasticity within heterogeneous microenvironments demonstrates significant spatial specificity and disease-context dependence.
View Article and Find Full Text PDFNucl Med Biol
September 2025
The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA. Electronic address:
Background: Positron-emission tomography (PET) imaging of the complement system could advance understanding of the innate immune system in central nervous system (CNS) diseases and development of new drugs. The goal of this study was to develop a PET radiotracer targeting the C3a receptor (C3aR) of the complement system.
Methods: C3aR radiotracer [F]1 was synthesized in one step.
Sci Transl Med
September 2025
Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are essential for the formation of myelin sheaths and pivotal for maintaining axonal integrity and conduction. Disruption of these cells and the myelin sheaths they produce is a hallmark of demyelinating conditions like multiple sclerosis or those resulting from certain drug side effects, leading to profound neurological impairments. In this study, we created a human brain organoid comprising neurons, astrocytes, and myelinating oligodendrocytes.
View Article and Find Full Text PDF