Neuroma following nerve injury and/or amputation is a debilitating condition with significant impacts on quality of life. Several approaches exist to prevent or treat neuroma and/or reduce associated pain; however, these approaches are not consistently effective, facile, or widely accessible. The present study characterizes a xenogeneic nerve cap graft device (NCGD) composed of decellularized porcine nerve.
View Article and Find Full Text PDFJ Biomed Mater Res A
November 2022
Neuroma formation following limb amputation is a prevalent and debilitating condition that can deeply affect quality of life and productivity. Several approaches exist to prevent or treat neuromas; however, no approach is either consistently reliable or surgically facile, with high rates of neuroma occurrence and/or recurrence. The present study describes the development and testing of a xenogeneic nerve cap graft made from decellularized porcine nerve.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFInjury to retinal ganglion cells (RGC), central nervous system neurons that relay visual information to the brain, often leads to RGC axon degeneration and permanently lost visual function. Herein this study shows matrix-bound nanovesicles (MBV), a distinct class of extracellular nanovesicle localized specifically to the extracellular matrix (ECM) of healthy tissues, can neuroprotect RGCs and preserve visual function after severe, intraocular pressure (IOP) induced ischemia in rat. Intravitreal MBV injections attenuated IOP-induced RGC axon degeneration and death, protected RGC axon connectivity to visual nuclei in the brain, and prevented loss in retinal function as shown by histology, anterograde axon tracing, manganese-enhanced magnetic resonance imaging, and electroretinography.
View Article and Find Full Text PDFCentral nervous system (CNS) neurons fail to regrow injured axons, often resulting in permanently lost neurologic function. Tacrolimus is an FDA-approved immunosuppressive drug with known neuroprotective and neuroregenerative properties in the CNS. However, tacrolimus is typically administered systemically and blood levels required to effectively treat CNS injuries can lead to lethal, off-target organ toxicity.
View Article and Find Full Text PDF