98%
921
2 minutes
20
The type I interferons (IFNs) are a family of cytokines with diverse biological activities, including antiviral, antiproliferative, and immunoregulatory functions. The discovery of the hormonally regulated, constitutively expressed IFNϵ has suggested a function for IFNs in reproductive tract homeostasis and protection from infections, but its intrinsic activities are untested. We report here the expression, purification, and functional characterization of murine IFNϵ (mIFNϵ). Recombinant mIFNϵ (rmIFNϵ) exhibited an α-helical fold characteristic of type I IFNs and bound to IFNα/β receptor 1 (IFNAR1) and IFNAR2, but, unusually, it had a preference for IFNAR1. Nevertheless, rmIFNϵ induced typical type I IFN signaling activity, including STAT1 phosphorylation and activation of canonical type I IFN signaling reporters, demonstrating that it uses the JAK-STAT signaling pathway. We also found that rmIFNϵ induces the activation of T, B, and NK cells and exhibits antiviral, antiproliferative, and antibacterial activities typical of type I IFNs, albeit with 100-1000-fold reduced potency compared with rmIFNα1 and rmIFNβ. Surprisingly, although the type I IFNs generally do not display cross-species activities, rmIFNϵ exhibited high antiviral activity on human cells, suppressing HIV replication and inducing the expression of known HIV restriction factors in human lymphocytes. Our findings define the intrinsic properties of murine IFNϵ, indicating that it distinctly interacts with IFNAR and elicits pathogen-suppressing activity with a potency enabling host defense but with limited toxicity, appropriate for a protein expressed constitutively in a sensitive mucosal site, such as the reproductive tract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836118 | PMC |
http://dx.doi.org/10.1074/jbc.M117.800755 | DOI Listing |
Unlabelled: The healthy intestine maintains homeostasis in part via immune responses to microbiota, which includes basal production of interferon cytokines. Previous work showed that Type III Interferon (IFN-λ) stimulates localized pockets of interferon-stimulated genes (ISGs) in the adult mouse intestinal epithelium at homeostasis that provide preemptive protection from viral pathogens. Here, we demonstrate that a major source of homeostatic IFN-λ production in the intestine is a population of epithelium-associated plasmacytoid dendritic cells (pDC).
View Article and Find Full Text PDFJCI Insight
September 2025
Department of Neuroscience, University of Texas at Dallas, Dallas, United States of America.
Type I interferons (IFNs) are critical cytokines for antiviral defense and are linked to painful diseases like rheumatoid arthritis, lupus, and neuropathic pain in humans. IFN-α therapy can cause myalgia, headache, joint and abdominal pain. Studies in rodent models demonstrate that direct action of IFNs on sensory neurons in the dorsal root ganglion (DRG) promotes hyperexcitability but rodent behavioral data on IFNs are conflicting, with reports of both pro- and anti-nociceptive actions.
View Article and Find Full Text PDFVaccines (Basel)
August 2025
Cancer Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada.
Background/objectives: Leukemia is associated with high recurrence rates and cancer vaccines are emerging as a promising immunotherapy against the disease. Here, we investigate the mechanism of action by which a personalized vaccine made from leukemia cells infected with an oncolytic virus (ICV) induces anti-tumor immunity.
Methods: Using the L1210 murine model, leukemia cells were infected and irradiated to create the ICV.
Cell Death Dis
August 2025
Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China.
Gastric cancer (GC) is a common and aggressive malignancy worldwide. Increasing evidence has shown that epigenetic changes are closely related to the development of cancer and tumor-associated macrophages. Here, we report that PRMT1 is a key immunosuppressive factor in GC.
View Article and Find Full Text PDFCell Insight
October 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology and Biosafety, Medical Research Institute, Wuhan University,
Mediator of IRF3 activation (MITA)/Stimulator of Interferon Genes (STING) (also known as MPYS/ERIS) is a crucial adaptor protein for initiating antiviral innate immune responses to intracellular DNA and DNA viruses. MITA binds cGAMP, a second messenger synthesized by cGAS in response to intracellular DNA, culminating in the induction of type I interferons (IFNs), inflammatory cytokines, and interferon-stimulated genes (ISGs). While the canonical IFN-dependent MITA signaling has been extensively studied, recent research has unveiled a growing repertoire of IFN-independent functions of MITA in various physiological processes and pathological conditions.
View Article and Find Full Text PDF