Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors.

Front Plant Sci

Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States.

Published: November 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant viral vectors enable the expression of proteins at high levels in a relatively short time. For many purposes (e.g., cell biological interaction studies) it may be desirable to express more than one protein in a single cell but that is often not feasible when using a single virus vector. Such a co-expression strategy requires the simultaneous delivery by two compatible and non-competitive viruses that can co-exist to each express a separate protein. Here, we report on the use of two agro-launchable coat-protein gene substitution GFP-expressing virus vector systems based on (TBSV) referred to as TG, and (TMV) annotated as TRBO-G. TG expressed GFP in , tomato, lettuce and cowpea, whereas expression from TRBO-G was detected only in the first two species. Upon co-infiltration of the two vectors co-expression was monitored by: molecular detection of the two slightly differently sized GFPs, suppressor-complementation assays, and using TG in combination with TRBO-RFP. All the results revealed that in and tomato the TBSV and TMV vectors accumulated and expressed proteins in the same plants, the same leaves, and in the same cells. Therefore, co-expression by these two vectors provides a platform for fast and high level expression of proteins to study their cell biology or other properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681929PMC
http://dx.doi.org/10.3389/fpls.2017.01808DOI Listing

Publication Analysis

Top Keywords

leaves cells
8
expression proteins
8
virus vector
8
vectors
5
expression
4
expression separate
4
proteins
4
separate proteins
4
proteins plant
4
plant leaves
4

Similar Publications

Background: has been extensively studied for its bioactive components and medicinal properties. This study was carried out to evaluate the fermentation ability of 2.1 yeast to determine suitable fermentation conditions.

View Article and Find Full Text PDF

Microscopic swimmers, such as bacteria and archaea, are paradigmatic examples of active matter systems. The study of these systems has given rise to novel concepts such as rectification of bacterial swimmers, in which microstructures can passively separate swimmers from non-swimming, inert particles. Many bacteria and archaea swim using rotary molecular motors to drive helical propellers called flagella or archaella.

View Article and Find Full Text PDF

A transition of dynamic rheological responses of single cells: from fluid-like to solid-like.

Biophys J

September 2025

Laboratory for Multiscale Mechanics and Medical Science, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:

The mechanical properties of cells are crucial for elucidating various physiological and pathological processes. Cells are found to exhibit a universal power-law rheological behavior at low frequencies. While they behave in a different manner at high frequency regimes, which leaves the transition region largely unexplored.

View Article and Find Full Text PDF

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF

Single-Cell Transcriptomic Profiling Reveals Diet-Dependent Dynamics of Glucosinolate Sulfatases Expression and Cellular Origin in the Midgut of Plutella xylostella.

Insect Biochem Mol Biol

September 2025

Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China. Electronic address:

The diamondback moth (Plutella xylostella), a globally destructive pest, has Brassicaceae as its long-term co-evolved host and can also utilize Fabaceae as an alternative field host. The primary differential factor between these plant families is glucosinolates (GLs). Conventional transcriptome data revealed high midgut expression of glucosinolate sulfatases (GSSs) in response to glucosinolates.

View Article and Find Full Text PDF