Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of this study was to assess safety and efficacy of islet transplantation after initial pancreas transplantation with subsequent organ failure. Patients undergoing islet transplantation at our institution after pancreas organ failure were compared to a control group of patients with pancreas graft failure, but without islet transplantation and to a group receiving pancreas retransplantation. Ten patients underwent islet transplantation after initial pancreas transplantation failed and were followed for a median of 51 months. The primary end point of HbA1c <7.0% and freedom of severe hypoglycemia was met by nine of 10 patients after follow-up after islet transplantation and in all three patients in the pancreas retransplantation group, but by none of the patients in the group without retransplantation (n = 7). Insulin requirement was reduced by 50% after islet transplantation. Kidney function (eGFR) declined with a rate of -1.0 mL ± 1.2 mL/min/1.73 m per year during follow-up after islet transplantation, which tended to be slower than in the group without retransplantation (P = .07). Islet transplantation after deceased donor pancreas transplant failure is a method that can safely improve glycemic control and reduce the incidence of severe hypoglycemia and thus establish similar glycemic control as after initial pancreas transplantation, despite the need of additional exogenous insulin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ctr.13153DOI Listing

Publication Analysis

Top Keywords

islet transplantation
20
organ failure
12
pancreas transplantation
12
transplantation initial
8
initial pancreas
8
transplantation
7
pancreas
6
islet
5
transplantation safe
4
safe efficacious
4

Similar Publications

Pancreatic Islet Cell Hormones: Secretion, Function, and Diabetes Therapy.

MedComm (2020)

September 2025

Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital Sichuan University Chen

The pancreatic islets of Langerhans, which are composed of α, β, δ, ε, and PP cells, orchestrate systemic glucose homeostasis through tightly regulated hormone secretion. Although the precise mechanisms involving β cells in the onset and progression of diabetes have been elucidated and insulin replacement therapy remains the primary treatment modality, the regulatory processes, functions, and specific roles of other pancreatic islet hormones in diabetes continue to be the subject of ongoing investigation. At present, a comprehensive review of the secretion and regulation of pancreatic islet cell hormones as well as the related mechanisms of diabetes is lacking.

View Article and Find Full Text PDF

Background: The long-term clinical efficacy of intraportal islet transplantation is hampered by islet loss due to inflammation, oxidative stress, and insufficient vascularization. This study explores the venous sac as an alternative implantation site for islet transplantation in large animal models.

Methods: An immunosuppressed, diabetic cynomolgus monkey received allogeneic islet implants in its mesenteric venous sac, with metabolic assessments over 112 days.

View Article and Find Full Text PDF

Islet transplantation offers a promising therapeutic strategy for type 1 diabetes patients with inadequate glycemic control or severe complications. Islet encapsulation using biocompatible materials presents a potential solution to reduce immune rejection. This study fabricated and characterized Schiff base hydrogels (CMOCs) composed of varying ratios of carboxymethyl chitosan (CMCS) and oxidized carboxymethyl starch (OCMS).

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of pancreatic beta cells, resulting in lifelong insulin therapy that falls short of a true cure. Beta cell replacement therapies hold immense potential to restore natural insulin production, but they face significant hurdles such as immune rejection, limited donor availability, and long-term graft survival. In this review, we explore cutting-edge advances in genetic engineering, biomaterials, and machine learning approaches designed to overcome these barriers and enhance the clinical applicability of beta cell therapies.

View Article and Find Full Text PDF

Background: Not all islet transplants desirably achieve insulin independence. This can be attributed to the microarchitecture and function of the islets influenced by their dimensions. Large islets enhance insulin secretion through paracrine effects but are more susceptible to hypoxic injury post-transplant, while small islets offer better viability and insulin independence.

View Article and Find Full Text PDF