A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Human embryonic stem cell-derived cardiovascular progenitor cells efficiently colonize in bFGF-tethered natural matrix to construct contracting humanized rat hearts. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bioengineering of whole hearts using human embryonic stem cells (hESCs)-derived cardiovascular progenitor cells (CPCs) and natural matrices is a promising approach to overcome organ donor shortage threatening millions of patients awaiting for heart transplantation. Here, we developed a novel strategy for generation of heart constructs by repopulating engineered decellularized rat hearts using hESCs-derived CPCs. Careful expansion of CPCs in a scalable stirred-suspension bioreactor combined with step-wise seeding (60 million cells in 3 steps of 20 million per 1.5 h) onto decellularized hearts containing immobilized basic fibroblast growth factor (bFGF) resulted in improved retention of CPCs and differentiation to cardiomyocytes, smooth muscle cells and endothelial cells as evaluated by immunohistochemistry and qRT-PCR. We observed spontaneous and synchronous contractions of humanized hearts after 12 days of perfusion as well as advanced alignment of myofilaments. Our study provides a robust platform for generation of artificial human hearts and resolves major bottlenecks hindering further development of this technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2017.10.054DOI Listing

Publication Analysis

Top Keywords

human embryonic
8
embryonic stem
8
cardiovascular progenitor
8
progenitor cells
8
rat hearts
8
cells
6
hearts
6
stem cell-derived
4
cell-derived cardiovascular
4
cells efficiently
4

Similar Publications