Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As discovered by Warburg 80 years ago most malignant cells rely more on glycolysis than normal cells. The high rate of glycolysis provides faster ATP production and greater lactic acid for tumor proliferation and invasion, thus indicating a potential target in anticancer therapy. Our previous studies demonstrated that 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) inhibited tumor cell proliferation in vitro. However, the underlying mechanisms still warrant further investigation. In the present study, we employed the human SGC-7901 gastric cancer cell line, built an orthotopic xenograft model in nude mice, examined the treatment response by 18F-FDG PET/CT and investigated the mechanisms of 3-BrPA and SCT in vivo. Our results demonstrated that glycolysis and tumor growth were inhibited by intraperitoneal injection of 3-BrPA and SCT, which were imaged using an 18F-FDG PET/CT scanner. In addition, apoptosis induced by 3-BrPA and SCT was initiated by the upregulation of Bax and downregulation of Bcl-2, which promote cytochrome c release and subsequently activate caspase-9 and -3, and ultimately execute mitochondria-mediated apoptosis. Furthermore, apoptosis was also modulated by the generation of ROS and inhibition of survivin. Accordingly, 3-BrPA and SCT can inhibit glycolysis and induce gastric cancer apoptosis through the mitochondrial caspase-dependent pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2017.6060 | DOI Listing |