98%
921
2 minutes
20
Purpose: To assess predictors of stated support for policies promoting physically active transportation.
Design: Cross-sectional.
Setting: US counties selected on county-level physical activity and obesity health status.
Participants: Participants completing random-digit dialed telephone survey (n = 906).
Measures: Survey measures assessed stated support for 5 policies to promote physically active transportation, access to active transportation facilities, and time spent in a car. County-level estimates included household car dependence and funding for bicycle-pedestrian projects.
Analysis: Multivariable generalized linear mixed models using binary distribution and logit link, accounting for clustering within county.
Results: Respondents supported policies for accommodating bicyclists and pedestrians through street improvements (89%), school active transportation programs (75%), employer-funded active commuting incentives (67%), and allocation of public funding (68%) and tax support (56%) for building and maintaining public transit. Residents spending >2 h/d (vs <0.7 hours) in cars were more likely to support street (odds ratio [OR]: 1.87; confidence interval [CI]: 1.09-3.22) and public transit (OR: 1.85; CI: 1.24-2.77) improvements. Residents in counties investing >$1.6 million in bicycle and pedestrian improvements expressed greater support for funding (OR: 1.71; CI: 1.04-2.83) and tax increases (OR: 1.73; CI: 1.08-2.75) for transit improvements compared to those with lower prior investments (<$276 100).
Conclusion: Support for policies to enable active transportation is higher where relevant investments in active transportation infrastructure are large (>$1.6 M), public transit is nearby, and respondents drive >2 h/d.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0890117117738758 | DOI Listing |
J Cell Sci
September 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
The microtubule motor dynein-2 is responsible for retrograde intraflagellar transport (IFT), a process critical for cilia assembly and cilium-dependent signaling. Mutations in genes encoding dynein-2 subunits interfere with ciliogenesis and are among the most frequent causes of skeletal ciliopathies. Despite its importance, little is known regarding dynein-2 assembly and regulation.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Mathematics, University of York, York, UK.
Active suspensions, which consist of suspended self-propelling particles such as swimming microorganisms, often exhibit non-trivial transport properties. Continuum models are frequently employed to elucidate phenomena in active suspensions, such as shear trapping of bacteria, bacterial turbulence and bioconvection patterns in suspensions of algae. Yet, these models are often empirically derived and may not always agree with the individual-based description of active particles.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Mathematics, University of York, York, UK.
The combined effect of axial stretching and cross-stream diffusion on the downstream transport of solute is termed Taylor dispersion. The dispersion of active suspensions is qualitatively distinct: viscous and external torques can establish non-uniform concentration fields with weighted access to shear, modifying mean drift and effective diffusivity. It would be advantageous to fine-tune the dispersion for systems such as bioreactors, where mixing or particle separation can improve efficacy.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, China.
Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Nanoionic devices, crucial for neuromorphic computing and ionically enabled functional actuators, are often kinetically limited. In bilayer configurations, experimentally deconvoluting ion transport within individual layers from the kinetics of transfer across solid-solid interfaces, however, remains a challenge, hindering rational device optimization. Here, we extend the dynamic current-voltage (-) technique to a PrCeO/LaCeCuO (PCO/LCCO) bilayer system, enabling the isolation and quantification of distinct ion transport processes.
View Article and Find Full Text PDF