98%
921
2 minutes
20
The optical properties of a Si-Au heterodimer nanostructure, which is composed of an Au split nanoring surrounded by a Si nanoring with a larger diameter, are investigated both theoretically and numerically. It is found that a pure magnetic plasmon Fano resonance can be achieved in the Si-Au heterodimer nanostructure when it is excited by an azimuthally polarized beam. It is revealed that the pure magnetic Fano resonance is generated by the destructive interference between the magnetic dipole resonance of the Si nanoring and the magnetic dipole resonance of the Au split nanoring. A coupled oscillator model is employed to analyze the Fano resonance of the Si-Au heterodimer nanostructure. The pure magnetic response of the Si-Au heterodimer nanostructure is verified by the current density distributions and the scattering powers of the electric and magnetic multipoles. The Fano resonance in the Si-Au heterodimer nanostructure exhibits potential applications of low-loss magnetic plasmon resonance in the construction of artificial magnetic metamaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.026704 | DOI Listing |
Chem Commun (Camb)
August 2025
Department of Chemistry, Brown University, Providence, Rhode Island, 02912, USA.
Multi-metallic nanoparticles (MMNPs) have recently garnered significant interest due to their inclusion of different metal atoms within a single nanostructure. The interactions among these metal atoms induce novel properties in MMNPs, making them an ideal platform for exploring the complex interplay between structure and properties, particularly in terms of catalytic properties. This review summarizes recent advancements in the synthesis and catalytic studies of MMNPs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2025
Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
Structural transformations from ribbons to twisted ribbons to helical ribbons are often observed across supramolecular assemblies and macroscopic structures and can be described under a consistent theoretical framework. Conical molecular self-assembled structures, however, are rarely observed, may require more than one subunit, their dimensions are hard to control, and are poorly understood. Cytoskeleton microtubule (MT) is a dynamic protein-polymer that self-assembles from αβ-tubulin heterodimer, providing mechanical support to Eukaryotic cells.
View Article and Find Full Text PDFBioconjug Chem
May 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
Paclitaxel (PTX), although effective against primary breast cancer, presents formidable clinical challenges due to severe toxicity and pro-metastatic potential, a critical concern as distant metastasis causes 90% of breast cancer-related deaths. To address these limitations, we designed and prepared a tumor microenvironment-responsive nanoprodrug, PTX-SS-3'HPT@RGD-HA NPs, that engineered RGD peptide-modified hyaluronic acid (HA) nanocarriers encapsulating the antimetastatic 3'-hydroxy pterostilbene (3'HPT) and PTX heterodimer linked by a glutathione (GSH)-cleavable disulfide bond. These nanoparticles targeting CD44 and αvβ receptors overexpressed in aggressive breast cancer cells and synergized enhanced permeability and retention effects with receptor-mediated endocytosis, facilitating superior tumor-specific drug deposition and GSH-activated payload release and .
View Article and Find Full Text PDFMol Oncol
August 2025
Institute of Biochemistry and Cell Biology, National Research Council of Italy, Monterotondo, Italy.
Targeting the heterodimer MDM2/MDM4 is a novel and effective route for the reactivation of wild-type p53 in human tumors with reduced toxicity in nontransformed cells. To improve the therapeutic potential of peptides that interfere with MDM4 binding to MDM2, we demonstrated the tumor-suppressive activity of a short peptide (Pep3S), which is composed of the last five amino acids of the MDM4 protein. Compared to longer peptides (previously identified), Pep3S binds MDM2 with high affinity, increases p53-dependent cell death in 2D and 3D colorectal cancer models, and is more efficacious in suppressing xenograft tumor growth.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2025
School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China. Electronic address:
Erlotinib (ERL) is a first-line targeted therapy for patients with epidermal growth factor receptor (EGFR)-mutant advanced non-small cell lung cancer (NSCLC). However, its effectiveness is hindered by acquired resistance and poor bioavailability. Carrier-free nanodrugs are a research hotspot due to their efficient targeting, high drug loading capacity, and the absence of any excipients.
View Article and Find Full Text PDF