A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function. | LitMetric

Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function.

Proc Natl Acad Sci U S A

Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706.

Published: November 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The presence of thin myelin sheaths in the adult CNS is recognized as a marker of remyelination, although the reason there is not a recovery from demyelination to normal myelin sheath thickness remains unknown. Remyelination is the default pathway after myelin loss in all mammalian species, in both naturally occurring and experimental disease. However, there remains uncertainty about whether these thin sheaths thicken with time and whether they remain viable for extended periods. We provide two lines of evidence here that thin myelin sheaths may persist indefinitely in long-lived animal models. In the first, we have followed thin myelin sheaths in a model of delayed myelination during a period of 13 years that we propose results in the same myelin sheath deficiencies as seen in remyelination; that is, thin myelin sheaths and short internodes. We show that the myelin sheaths remain thin and stable on many axons throughout this period with no detrimental effects on axons. In a second model system, in which there is widespread demyelination of the spinal cord and optic nerves, we also show that thinly remyelinated axons with short internodes persist for over the course of 2 y. These studies confirm the persistence and longevity of thin myelin sheaths and the importance of remyelination to the long-term health and function of the CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5692595PMC
http://dx.doi.org/10.1073/pnas.1714183114DOI Listing

Publication Analysis

Top Keywords

myelin sheaths
28
thin myelin
24
myelin
9
thin
8
sheaths
8
myelin sheath
8
short internodes
8
remyelination
5
sheaths hallmark
4
hallmark remyelination
4

Similar Publications