Automatic initialization and quality control of large-scale cardiac MRI segmentations.

Med Image Anal

Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Electronic and Electrical Engineering Department, University of Sheffield, Sheffield, UK.

Published: January 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2017.10.001DOI Listing

Publication Analysis

Top Keywords

quality control
16
initialization quality
12
cardiac mri
12
automatic initialization
8
large-scale cardiac
8
large clinical
8
clinical trials
8
trials population
8
population imaging
8
fully automatic
8

Similar Publications

Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.

View Article and Find Full Text PDF

Background: Children in the United States have poor diet quality, increasing their risk for chronic disease burden later in life. Caregivers' feeding behaviors are a critical factor in shaping lifelong dietary habits. The Strong Families Start at Home/Familias Fuertes Comienzan en Casa (SFSH) was a 6-month, home-based, pilot randomized-controlled feasibility trial that aimed to improve the diet quality of 2-5-year-old children and promote positive parental feeding practices among a predominantly Hispanic/Latine sample.

View Article and Find Full Text PDF

Implementing Social Media Strategies in Community-Partnered HIV Research: Practical Considerations From 3 Ongoing Studies.

JMIR Public Health Surveill

September 2025

Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.

Background: In recent years, social media has emerged as a pivotal tool in implementation science efforts to address the HIV epidemic. Engaging community partners is essential to ensure the successful and equitable implementation of social media strategies. There is a notable lack of scholarship addressing the operational considerations for studies using social media strategies in community-partnered HIV research.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated death globally. Second-line therapies are crucial for improving survival and quality of life among individuals suffering from advanced HCC who have not responded to first-line therapies. This study sought to evaluate the safety and efficacy of different second-line therapies for advanced HCC by network meta-analysis.

View Article and Find Full Text PDF

Rationale: There are insufficient data to inform the management of central sleep apnea (CSA) in patients with heart failure (HF) with reduced ejection fraction (HFrEF). Nocturnal oxygen therapy (NOT) has been postulated to benefit CSA patients with HFrEF, but has not been rigorously studied. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.

View Article and Find Full Text PDF