Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many studies have noted that the bones of the human upper limb display bilateral asymmetry, commonly linking this asymmetry in external and internal morphology to handedness and lateralization. Few studies, however, have attempted to track asymmetry throughout ontogeny. This study assesses the ontogenetic development of cortical and trabecular bone asymmetry in the humerus. We predict that directional asymmetry in structural properties will emerge in concert with hand preference and increased activity levels during the juvenile period. Paired humeri from 57 individuals from the Norris Farms #36 archaeological skeletal collection ranging in age from neonate to adult were used in the current study. Cortical bone cross-sectional properties and three-dimensional trabecular bone structure were quantified from microcomputed tomography data. The results indicate significant absolute asymmetry in all measured cortical and trabecular bone variables across all ages. Trabecular bone displays significantly higher absolute asymmetry than cortical bone. Contrary to expectations, however, this study found very little evidence for significant directional asymmetry in humeral length and cortical or trabecular bone variables, except in adults. The presence of significant absolute asymmetry in all age groups, and the lack of significant directional asymmetry in almost all variables at all ages, suggests that structural differences due to higher levels of habitual loading in the dominant arm are overlain on a template of potentially significant existing asymmetry. Anat Rec, 301:1012-1025, 2018. © 2017 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.23705DOI Listing

Publication Analysis

Top Keywords

trabecular bone
24
cortical trabecular
16
asymmetry
12
directional asymmetry
12
absolute asymmetry
12
asymmetry cortical
8
bone
8
cortical bone
8
bone variables
8
variables ages
8

Similar Publications

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF

Wrist biomechanics remain incompletely understood due to the complexity of experimental measurements in this multi-bone joint system. Finite element analysis provides a powerful alternative for investigating internal variables such as carpal kinematics and displacement patterns. This technical brief compares two bone representation approaches, all-cortical versus cortical-trabecular, using two distinct finite element models developed from the same wrist CT dataset.

View Article and Find Full Text PDF

Purpose: This systematic review provides a critical evaluation, synthesis of the existing literature on isotretinoin's effects on craniomaxillofacial bone.

Methods: Following the PRISMA guidelines and registered in PROSPERO, the review was conducted in August 2024 across various databases. Eligible in vivo studies were analysed for their assessment of isotretinoin's effects on craniomaxillofacial bone.

View Article and Find Full Text PDF

Unlabelled: Among individuals aged ≥ 40 years old, we found that after controlling for age, sex, FMI, and tissue thickness, an increase of 1kg/m of ALMI is associated with an increase in TBS of 0.058, which is approximately half of one population standard deviation, or 4.7% of the average value for TBS.

View Article and Find Full Text PDF

Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.

View Article and Find Full Text PDF