98%
921
2 minutes
20
Genome rearrangements underlie different human diseases including many cancers. Determining the rates at which genome rearrangements arise and isolating unique, independent genome rearrangements is critical to understanding the genes and pathways that prevent or promote genome rearrangements. Here, we describe quantitative S. cerevisiae genetic assays for measuring the rates of accumulating genome rearrangements including deletions, translocations, and broken chromosomes healed by de novo telomere addition that result in the deletion of two counter-selectable genes, CAN1 and URA3, placed in the nonessential regions of the S. cerevisiae genome. The assays also allow for the isolation of individual genome rearrangements for structural studies, and a method for analyzing genome rearrangements by next-generation DNA sequencing is provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5657460 | PMC |
http://dx.doi.org/10.1007/978-1-4939-7306-4_5 | DOI Listing |
J Assist Reprod Genet
September 2025
UFR-SVS, UVSQ, 78180, Montigny Le Bretonneux, France.
Introduction: Complex chromosomal rearrangements (CCRs) are frequently associated with infertility and have been described in the literature. Chromoanagenesis corresponds to a group of CCRs with a high number of chromosome breakpoints. These CCRs involving small structural variations can only be identified by using high-resolution genomic techniques.
View Article and Find Full Text PDFExp Appl Acarol
September 2025
Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali, 671000, China.
The family Spinturnicidae belongs to the suborder Monogynapsida, superfamily Dermanyssoidea, and exclusively parasitizes the body surface of bats. In the present study, we determined the complete mitochondrial genome of Spinturnix psi, a species of bat mite, and subsequently conducted a comprehensive analysis of its genomic information. The mitochondrial genome of S.
View Article and Find Full Text PDFJCO Precis Oncol
September 2025
Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
Purpose: Tumor comprehensive genomic profiling (CGP) may detect potential germline pathogenic/likely pathogenic (P/LP) alterations as secondary findings. We analyzed the frequency of potentially germline variants and large rearrangements (LRs) in the RATIONAL study, an Italian multicenter, observational clinical trial that collects next-generation sequencing-based tumor profiling data, and evaluated how these findings were managed by the enrolling centers.
Patients And Methods: Patients prospectively enrolled in the pathway-B of the RATIONAL study and undergoing CGP with the FoundationOne CDx assays were included in the analysis.
Front Genet
August 2025
Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Background And Objective: Parental chromosomal structural variations (SVs) represent a primary genetic factor contributing to recurrent spontaneous abortion (RSA). Individuals carrying SVs with complex chromosomal rearrangements (CCRs) typically exhibit a normal phenotype but are at an increased risk of miscarriage. Current standard clinical detection methods are insufficient for the identification and interpretation of all SV types, particularly complex and occult SVs, thereby presenting a significant challenge for clinical genetic counseling.
View Article and Find Full Text PDFAm J Clin Pathol
September 2025
Laboratory for Clinical Genomics and Advanced Technology (CGAT)-Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.
Objective: Differentiating between the repertoire of immunoglobulin rearrangements is important in guiding diagnoses and management of B-cell lymphoma processes. A subset of these disease entities, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), can show distinct genomic profiles with a shared cell of origin. In this report, we describe a rare case in which differentiating between the immunoglobulin family of rearrangements (IGH, IGK, IGL) with optical genome mapping (OGM) helped revise the clinical suspicion of CLL.
View Article and Find Full Text PDF