98%
921
2 minutes
20
The speed at which a molecular motor operates is critically important for the survival of a virus or an organism but very little is known about the underlying mechanisms. Tailed bacteriophage T4 employs one of the fastest and most powerful packaging motors, a pentamer of gp17 that translocates DNA at a rate of up to ∼2000-bp/s. We hypothesize, guided by structural and genetic analyses, that a unique hydrophobic environment in the catalytic space of gp17-adenosine triphosphatase (ATPase) determines the rate at which the 'lytic water' molecule is activated and OH- nucleophile is generated, in turn determining the speed of the motor. We tested this hypothesis by identifying two hydrophobic amino acids, M195 and F259, in the catalytic space of gp17-ATPase that are in a position to modulate motor speed. Combinatorial mutagenesis demonstrated that hydrophobic substitutions were tolerated but polar or charged substitutions resulted in null or cold-sensitive/small-plaque phenotypes. Quantitative biochemical and single-molecule analyses showed that the mutant motors exhibited 1.8- to 2.5-fold lower rate of ATP hydrolysis, 2.5- to 4.5-fold lower DNA packaging velocity, and required an activator protein, gp16 for rapid firing of ATPases. These studies uncover a speed control mechanism that might allow selection of motors with optimal performance for organisms' survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737356 | PMC |
http://dx.doi.org/10.1093/nar/gkx809 | DOI Listing |
Microbiol Spectr
September 2025
Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the Gammaherpesvirinae subfamily. During the lytic phase of herpesviruses, viral capsids form in the host cell nucleus, and the replicated viral genome is packaged into these capsids. The herpesviral genome is replicated as a precursor head-to-tail concatemer consisting of tandemly repeated genomic units, each flanked by terminal repeats (TRs).
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, United States.
Nucleosome repositioning is essential for establishing nucleosome-depleted regions to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogeneously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome-positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil. Electronic address:
The consumption of water of low microbiological quality can be detrimental and may cause significant health issues. Thus, amplicon sequencing can be an advantageous method to observe bacterial diversity in water. This study aimed to understand the complex bacterial communities present in natural mineral water packaged in 20 L returnable containers through amplicon sequencing.
View Article and Find Full Text PDFMol Pharm
September 2025
Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.
Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China.
Asthma is a chronic inflammatory respiratory disease influenced by genetic and environmental factors. Emerging evidence suggests that microplastics and nanoplastics (NPs) pose significant health risks. When inhaled, these tiny particles can accumulate in the lungs, triggering inflammation, oxidative stress, and other disruptions in pulmonary function.
View Article and Find Full Text PDF