98%
921
2 minutes
20
One approach to identifying and mapping the state of marine biophysical conditions is the identification of large-scale ecological units for which conditions are similar and the strategies of management may also be similar. Because biological processes are difficult to directly record over large areas, abiotic characteristics are used as surrogate parameters. In this work, the Mediterranean Sea was classified into homogeneous spatial areas based on abiotic variables. Eight parameters were selected based on salinity, sea surface temperature, photosynthetically active radiation, sea-wave heights and depth variables. The parameters were gathered in grid points of 0.5° spatial resolution in the open sea and 0.125° in coastal areas. The typologies were obtained by data mining the eight parameters throughout the Mediterranean and combining two clustering techniques: self-organizing maps and the k-means algorithm. The result is a division of the Mediterranean Sea into seven typologies. For these typologies, the classification recognizes differences in temperature, salinity and radiation. In addition, it separates coastal from deep areas. The influence of river discharges and the entrance of water from other seas are also reflected. These results are consistent with the ecological requirements of the five studied seagrasses (Posidonia oceanica, Zostera marina, Zostera noltei, Cymodocea nodosa, Halophila stipulacea), supporting the suitability of the resulting classification and the proposed methodology. The approach thus provides a tool for the sustainable management of large marine areas and the ability to address not only present threats but also future conditions, such as climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2017.09.058 | DOI Listing |
Tissue Cell
September 2025
Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy; Istituto Nazionale Biostrutture e Biosistemi, Consorzio interuniversitario (INBB), Via dei Carpegna, 19, Roma 00165, Italy. Electronic address:
The Atlantic blue crab (Callinectes sapidus Rathbun, 1896) is a euryhaline and eurythermal species native to the Atlantic coasts of the Americas. Although its widespread distribution across the Mediterranean basin is well documented, information on its reproductive patterns remains limited. This study focused on the combination of both macroscopic and histologic characterization of ovarian developmental stages in female blue crabs along the north-central Italian Adriatic coast, within the spawning period.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
Marine heatwaves are intensifying due to global warming and increasingly drive mass mortality events in shallow benthic ecosystems. Marine invertebrates host diverse microbial communities that contribute to their health and resilience, yet microbiome responses under thermal stress remain poorly characterised across most taxa. Here, we characterise the microbiome composition in colonies of the common Mediterranean bryozoan Myriapora truncata at two depths (13 and 17 m) following the extreme 2022 marine heatwave.
View Article and Find Full Text PDFISME Commun
January 2025
Instituto Multidisciplinar para el Estudio del Medio Ramon Margalef, Parque Científico, Edificio Nuevos Institutos, University of Alicante, Ap- Correos 99, E-03690, San Vicente del Raspeig, Alicante, Spain.
Microbes and their viruses drive central biogeochemical cycles on a global scale. Understanding the biology and ecology of virus-host interactions and their impact on ecosystems depends on our ability to develop tools that enable high-throughput screening of ecologically relevant, uncultured virus-host pairs. Viruses infecting Pelagibacterales, the predominant bacteria in surface oceans, have been studied through computational analyses and cultivation efforts.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, E2S-UPPA, CNRS, Université de Pau et des Pays de l'Adour, 2 Av. du Président Pierre Angot, Pau 64000, France.
The origin of the bioaccumulative neurotoxin methylmercury (MeHg) in the ocean remains elusive. The current paradigm suggests that the microbial methylation of inorganic Hg within the oceanic water column produces monomethylmercury (MMHg) and potentially dimethylmercury (DMHg). Reaction rates and main drivers governing MeHg levels (sum of MMHg and DMHg) are poorly constrained.
View Article and Find Full Text PDFSci Total Environ
September 2025
Sea Mammal Research Unit, University of St Andrews, United Kingdom.
Among-individual variability in animal behaviour and diet leads to a plethora of mini-niches within a population's general niche. Such variability is directly or indirectly linked to inter- and intra-specific competition, behavioural adaptation and variation in foraging tactics, which may lead to evolutionary divergence and speciation but is also relevant to population resilience and conservation. We used boat surveys, photo-identification techniques, biopsy sampling and stable isotope analysis (δC, δN) to study the intra-population isotopic niche variation in an apex predator, the common bottlenose dolphin (Tursiops truncatus), in the northern Adriatic Sea.
View Article and Find Full Text PDF