A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maintaining zinc homeostasis is an important property of all organisms. In the yeast Saccharomyces cerevisiae, the Zap1 transcriptional activator is a central player in this process. In response to zinc deficiency, Zap1 activates transcription of many genes and consequently increases accumulation of their encoded proteins. In this report, we describe a new mechanism of Zap1-mediated regulation whereby increased transcription of certain target genes results in reduced protein expression. Transcription of the Zap1-responsive genes RTC4 and RAD27 increases markedly in zinc-deficient cells but, surprisingly, their protein levels decrease. We examined the underlying mechanism further for RTC4 and found that this unusual regulation results from altered transcription start site selection. In zinc-replete cells, RTC4 transcription begins near the protein-coding region and the resulting short transcript leader allows for efficient translation. In zinc-deficient cells, RTC4 RNA with longer transcript leaders are expressed that are not efficiently translated due to the presence of multiple small open reading frames upstream of the coding region. This regulation requires a potential Zap1 binding site located farther upstream of the promoter. Thus, we present evidence for a new mechanism of Zap1-mediated gene regulation and another way that this activator protein can repress protein expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696102PMC
http://dx.doi.org/10.1111/mmi.13851DOI Listing

Publication Analysis

Top Keywords

upstream promoter
8
saccharomyces cerevisiae
8
mechanism zap1-mediated
8
protein expression
8
zinc-deficient cells
8
cells rtc4
8
rtc4
5
transcription
5
zap1-dependent transcription
4
transcription alternative
4

Similar Publications