98%
921
2 minutes
20
Background: Neuroendocrine-differentiated prostate cancer (NEPCa) is refractory to androgen deprivation therapy and shows a poor prognosis. The underlying mechanisms responsible for neuroendocrine differentiation (NED) are yet to be clarified. In this study, we investigated the role of mammalian target of rapamycin (mTOR) in NEPCa.
Methods: We utilized a gain-of-function analysis by establishing a human PCa LNCaP stable line that expresses hyperactive mTOR (LNCaP-mTOR). Then, we employed a comprehensive mass spectrometric analysis to identify a key transcription factor in LNCaP-mTOR, followed by a loss-of-function analysis using CRISPR/Cas system.
Results: The activation of mTOR induced NED. We observed significant cell growth arrest in NED of LNCaP-mTOR, which accompanied increased expression of p21 . A comprehensive mass spectrometric analysis identified interferon regulatory factor 1 (IRF1) as a key transcription factor in growth arrest of LNCaP-mTOR. The disruption of IRF1 gene in LNCaP-mTOR reversed cell growth arrest along with the suppression of its target p21 . These results indicate that the growth arrest in NED is at least in part dependent on IRF1 through the induction of p21 .
Conclusions: We identified active mTOR as a novel inducer of NED, and elucidated a mechanism underlying the malignant transformation of NEPCa by recapitulating NED in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.23425 | DOI Listing |
Chem Biol Interact
September 2025
School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Shizhen Laboratory, Wuhan,430061, People 's
Intrahepatic cholangiocarcinoma (iCCA) is a malignant liver tumor with insidious onset, limited treatments, and poor prognosis. Recent studies show celecoxib exerts marked cytotoxic effects on cholangiocarcinoma cell lines, suggesting its potential as an iCCA therapy. However, the potential molecular and cellular mechanisms that link celecoxib treatment to its toxicological outcomes remain unclear.
View Article and Find Full Text PDFChem Biol Interact
September 2025
Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China. Electronic address:
There is increasing evidence that nuclear receptor subfamily 1 group I member 3 (NR1I3) plays a significant role in the progression of many malignancies. However, it is unclear whether NR1I3 suppresses colorectal cancer (CRC) growth or alters gluconeogenesis. Western blotting, flow cytometry analysis, cell proliferation, colony formation assays, quantitative real-time polymerase chain reaction (qRT‒PCR), gluconeogenesis tests, and animal models were used to examine the functional role of NR1I3 in CRC cells.
View Article and Find Full Text PDFMol Plant
September 2025
Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland. Electronic address:
In Arabidopsis roots, xylem-pole-pericycle (XPP) cells exhibit dual cell fates by contributing to both lateral root (LR) and cambium formation. Despite the significant progress in understanding these processes individually, the mechanism deciding between these two fates and its contribution on root architecture and secondary growth remain unknown. Here we combined lineage tracing with molecular genetics to study the regulation of fate plasticity of XPP cell lineage.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Korea.
Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
September 2025
Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland College Park, College Park, MD, 20742, USA. Electronic address:
Translocon-associated protein subunit beta (TRAPβ), also known as signal sequence receptor 2 (SSR2) serves as an auxiliary protein facilitating co-translational translocation in the endoplasmic reticulum (ER); however, its role in colorectal cancer is unknown to date. The objectives of the current study are to examine if TRAPβ/SSR2 knockdown affects the cell proliferation and to elucidate mechanisms by which TRAPβ/SSR2 regulates proliferation of human colorectal cancer. We silenced TRAPβ/SSR2 transiently and stably in human colorectal cancer cell lines and analyzed cell proliferative properties.
View Article and Find Full Text PDF