Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite the evidence that increased frequency and magnitude of extreme climate events (ECE) considerably affect plant performance, there is still a lack of knowledge about how these events affect mountain plant biodiversity and mountain ecosystem functioning. Here, we assessed the short-term (one vegetation period) effects of simulated ECEs [extreme drought (DR), advanced and delayed snowmelt (AD and DE), respectively] on the performance of 42 plant species occurring in the Bavarian Alps (Germany) along an elevational gradient of 600-2000 m a.s.l. in terms of vegetative growth and reproduction performance. We demonstrate that plant vegetative and generative traits respond differently to the simulated ECEs, but the nature and magnitude treatment effects strongly depend on study site location along the elevational gradient, species' altitudinal origin and plant functional type (PFT) of the target species. For example, the negative effect of DR treatment on growth (e.g., lower growth rates and lower leaf nitrogen content) and reproduction (e.g., lower seed mass) was much stronger in upland sites, as compared to lowlands. Species' response to the treatments also differed according to their altitudinal origin. Specifically, upland species responded negatively to extreme DR (e.g., lower growth rates and lower leaf carbon concentrations, smaller seed set), whereas performance of lowland species remained unaffected (e.g., stable seed set and seed size) or even positively responded (e.g., higher growth rates) to that treatment. Furthermore, we were able to detect some consistent differences in responses to the ECEs among three PFTs (forbs, graminoids, and legumes). For instance, vegetative growth and sexual reproduction of highly adaptable opportunistic graminoids positively responded to nearly all ECEs, likely on the costs of other, more conservative, forbs and legumes. Our results suggest that ECEs can significantly modify the performance of specific plant groups and therefore lead to changes in plant community structure and composition under ongoing climate change. Our study therefore underlines the need for more experimental studies on the effects of extreme climate events to understand the potential consequences of climate change for the alpine ecosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581835PMC
http://dx.doi.org/10.3389/fpls.2017.01478DOI Listing

Publication Analysis

Top Keywords

growth rates
12
effects extreme
8
extreme climate
8
climate events
8
simulated eces
8
elevational gradient
8
vegetative growth
8
altitudinal origin
8
lower growth
8
rates lower
8

Similar Publications

Background: Ovarian cancer remains the most lethal gynecological cancer, with fewer than 50% of patients surviving more than five years after diagnosis. This study aimed to analyze the global epidemiological trends of ovarian cancer from 1990 to 2021 and also project its prevalence to 2050, providing insights into these evolving patterns and helping health policymakers use healthcare resources more effectively.

Methods: This study comprehensively analyzes the original data related to ovarian cancer from the GBD 2021 database, employing a variety of methods including descriptive analysis, correlation analysis, age-period-cohort (APC) analysis, decomposition analysis, predictive analysis, frontier analysis, and health inequality analysis.

View Article and Find Full Text PDF

This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.

View Article and Find Full Text PDF

The present study aimed to explore the potential of Indian mustard ( L.) for phytoremediation of soil contaminated with ciprofloxacin. The antibiotic ciprofloxacin was selected due to its rapidly increasing presence in soil.

View Article and Find Full Text PDF

An Investigation of Hyperostosis Frontalis Interna in a Modern Anatomical Body Donor Population.

Clin Anat

September 2025

Department of Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA.

This research sought to examine the prevalence and severity of hyperostosis frontalis interna (HFI) in the Chicagoland anatomical body donor population. The study further aimed to elucidate potential demographic risk factors for HFI, including sex, age at death, and structural vulnerability index (SVI), as well as any common comorbidities, as gleaned from death certificates. HFI is an irregular bony overgrowth of the endocranial surface of the frontal bone.

View Article and Find Full Text PDF

This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).

View Article and Find Full Text PDF