Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Auxin response factors (ARFs) are the transcription factors that regulate auxin responses in various aspects of plant growth and development. Although genome-wide analysis of ARF gene family has been done in some species, no information is available regarding ARF genes in chickpea. In this study, we identified 28 ARF genes (CaARF) in the chickpea genome. Phylogenetic analysis revealed that CaARFs can be divided into four different groups. Duplication analysis revealed that 50% of CaARF genes arose from duplication events. We analyzed expression pattern of CaARFs in various developmental stages. CaARF16.3, CaARF17.1 and CaARF17.2 showed highest expression at initial stages of flower bud development, while CaARF6.2 had higher expression at later stages of flower development. Further, CaARF4.2, CaARF9.2, CaARF16.2 and CaARF7.1 exhibited differential expression under different abiotic stress conditions, suggesting their role in abiotic stress responses. Co-expression network analysis among CaARF, CaIAA and CaGH3 genes enabled us to recognize components involved in the regulatory network associated with CaARFs. Further, we identified microRNAs that target CaARFs and TAS3 locus that trigger production of trans-acting siRNAs targeting CaARFs. The analyses presented here provide comprehensive information on ARF family members and will help in elucidating their exact function in chickpea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589731PMC
http://dx.doi.org/10.1038/s41598-017-11327-5DOI Listing

Publication Analysis

Top Keywords

co-expression network
8
network analysis
8
auxin response
8
gene family
8
arf genes
8
analysis revealed
8
stages flower
8
abiotic stress
8
analysis
5
caarfs
5

Similar Publications

Blood transcriptomic analysis reveals a distinct molecular subtype of treatment resistant depression compared to non-treatment resistant depression.

Brain Behav Immun

September 2025

Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona 08003, Spain.

Treatment-resistant depression (TRD) is a severe condition characterized by chronic and recurrent depressive symptoms, leading to significant morbidity and a considerable socio-economic impact. Genetic and biological studies suggest that TRD is associated with distinct biological characteristics. In this study, we analysed whole-transcriptome differences in 293 patients with major depressive disorder (MDD) to compare TRD (N = 150) vs non-TRD (N = 143) cases.

View Article and Find Full Text PDF

Cross-linked genes analysis of programmed cell death and network pharmacological validation after spinal cord injury.

Biochem Biophys Res Commun

August 2025

Department of othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Me

Programmed cell death (PCD), which describes cell death regulated by a sequence of gene expression events, strongly impacts the prognosis of spinal cord injury (SCI). Nevertheless, the connections between the various PCD types and the cross-linked genes regulate that these types of cell death in SCI remain unclear. This study sought to identify and investigate the key genes connections that regulated PCD in SCI.

View Article and Find Full Text PDF

Background: Ankylosing spondylitis (AS), a chronic inflammatory disorder affecting axial joints, is frequently complicated by uveitis. However, the molecular mechanisms linking AS to secondary uveitis remain poorly understood.

Methods: We integrated transcriptomic datasets from AS (GSE73754) and uveitis (GSE194060) cohorts to identify shared molecular pathways.

View Article and Find Full Text PDF

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF

Isoform-specific expression patterns have been linked to stress-related psychiatric disorders such as major depressive disorder (MDD). To further explore their involvement, we constructed co-expression networks using total gene expression (TE) and isoform ratio (IR) data from affected ( = 210, 81% with depressive symptoms) and unaffected ( = 95) individuals. Networks were validated using advanced graph generation methods.

View Article and Find Full Text PDF