Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Pirfenidone is currently approved in the EU for the treatment of mild to moderate idiopathic pulmonary fibrosis (IPF) and offers a beneficial risk-benefit profile. However, there are several other, progressive fibrotic lung diseases, in which conventional anti-inflammatory therapy is not sufficiently effective and antifibrotic therapies may offer a novel treatment option.

Methods/design: We designed a study protocol for inclusion of patients with progressive fibrotic lung disease despite conventional anti-inflammatory therapy (EudraCT 2014-000861-32). The study population comprises patients with collagen-vascular disease-associated lung fibrosis (CVD-LF), fibrotic non-specific interstitial pneumonia (fNSIP), chronic hypersensitivity pneumonitis (cHP), and asbestos-related lung fibrosis (ALF). Disease progression needs to be proven by slope calculation of at least three Forced Vital Capacity (FVC) values obtained within 6-24 months prior to inclusion, documenting an annualized decline in percent predicted FVC of 5% (absolute) or more despite appropriate conventional therapy. Absolute change in percent predicted FVC from baseline - analyzed using a rank analysis of covariance (ANCOVA) model - will serve as efficacy-related primary study endpoint.

Discussion: There is an urgent unmet clinical need for effective therapies for patients with a progressive fibrotic lung disease other than IPF. The current study protocol is unique with respect to selecting patients with different disease entities of lung fibrosis which have, however, essential pathophysiological characteristics in common. Moreover, by selecting patients with evidence of disease progression despite conventional therapy, the protocol ensures that a cohort of interstitial lung disease (ILD) patients with a high unmet medical need is targeted and it may allow a sufficiently high event rate for evaluation of treatment responses.

Trial Registration: DRKS00009822 (registration date: January 13th 2016).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588600PMC
http://dx.doi.org/10.1186/s12890-017-0462-yDOI Listing

Publication Analysis

Top Keywords

lung fibrosis
16
progressive fibrotic
12
fibrotic lung
12
lung disease
12
lung
8
conventional anti-inflammatory
8
anti-inflammatory therapy
8
study protocol
8
patients progressive
8
despite conventional
8

Similar Publications

Respiratory system diseases, including infections, inflammation, fibrosis, cancer, and others, impose a substantial burden on human health worldwide. The respiratory tract is constantly exposed to external stimuli due to its connection with the outside environment. Therefore, the immune system plays a crucial role in respiratory diseases.

View Article and Find Full Text PDF

Background: Organic chemicals have been known to cause allergic diseases such as bronchial asthma and hypersensitivity pneumonitis; however, the possibility that they do not cause irreversible pulmonary fibrosis has not been considered. Polyacrylic acid (PAA), an organic chemical, has caused irreversible progressive pulmonary fibrosis in exposed workers, indicating its potential to induce pulmonary inflammation and fibrosis. Although intratracheal instillation studies are commonly used for evaluating lung pathology, traditional methods face challenges with chemical substances, particularly nanoparticles, which tend to aggregate in suspension and prevent uniform pulmonary distribution.

View Article and Find Full Text PDF

Mouse intestine as a useful model for CFTR electrophysiology function analysis.

Methods Cell Biol

September 2025

Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy; CEINGE-Biotecnologie Avanzate, Naples, Italy.

Cystic fibrosis (CF) is a genetic disorder primarily known for its severe impact on lung function, but it also significantly affects the digestive system, leading to complications such as intestinal blockages, malabsorption, inflammation, and microbial dysbiosis. The study of CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) effects on intestinal physiology is critical for developing new effective treatments. This work highlights the use of the mouse intestine as a valuable model for analyzing cellular electrophysiology and CFTR function.

View Article and Find Full Text PDF

Diagnoses of prediabetes and metabolic syndromes, such as metabolic-associated steatotic liver disease (MASLD), are increasing at an alarming rate worldwide, often simultaneously. A significant consequence of these is high risk of cardiovascular disease, highlighting the need for cardiac-specific therapeutics for intervention during the prediabetic stage. Recent studies have demonstrated that chemogenetic activation of the cardiac parasympathetic system through hypothalamic oxytocin (OXT) neurons provides cardioprotective effects in heart disease models by targeting excitatory neurotransmission to brainstem cardiac vagal neurons.

View Article and Find Full Text PDF