Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM) and individual electron acceptors (10 mM), including nitrate, Fe, and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3- pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0-30 ppt). Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554518PMC
http://dx.doi.org/10.3389/fmicb.2017.01520DOI Listing

Publication Analysis

Top Keywords

sediment samples
12
testosterone biodegradation
12
testosterone
9
biochemical mechanisms
8
anaerobic testosterone
8
testosterone metabolism
8
estuarine sediments
8
metabolism anaerobic
8
electron acceptors
8
metagenomic analysis
8

Similar Publications

Re-Os geochronology for sulfides and organic-rich sediments.

Natl Sci Rev

September 2025

Department of Earth Sciences, Durham University, Durham DH1 3LE, UK.

Rhenium and osmium are both siderophilic and chalcophilic, exhibiting a strong affinity for organic-rich materials. This makes the Re-Os chronometer a valuable complement to geochronometers based on lithophile elements. In this review, we begin by discussing how the elemental abundances and isotopic compositions impact sample selection, analytical strategy, and data interpretation.

View Article and Find Full Text PDF

PER: and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that accumulate in aquatic ecosystems, posing a threat to wildlife. This study examines the potential of Asian clams (Corbicula fluminea) as an active biomonitoring species for assessing PFAS contamination in the Scheldt River, Belgium. Clams were exposed in cages at six sites along the river for a six-week exposure period, with simultaneous collection of sediment and water samples at each site.

View Article and Find Full Text PDF

This study aimed to compare the species and functional diversity of macrobenthic communities between natural and planted mangrove ecosystems. Samples were collected from two mangrove sites in the Gulf of Oman. Physicochemical properties of water and sediment characteristics were analyzed to assess their correlation with community structure.

View Article and Find Full Text PDF

Purpose: The number of oxygen vacancies in quartz measured by electron spin resonance (ESR) as the intensity of the E' center has been used to investigate the provenance of the sediments and has been found to be a good proxy in discussing the direction and intensity of the wind system in the past. While its temporal variations have been examined using marine sediments. The present study aimed to show that terrestrial sediments are also useful for such studies on climate change when it is continuous.

View Article and Find Full Text PDF

The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.

View Article and Find Full Text PDF