98%
921
2 minutes
20
Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM) and individual electron acceptors (10 mM), including nitrate, Fe, and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3- pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0-30 ppt). Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554518 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.01520 | DOI Listing |
Natl Sci Rev
September 2025
Department of Earth Sciences, Durham University, Durham DH1 3LE, UK.
Rhenium and osmium are both siderophilic and chalcophilic, exhibiting a strong affinity for organic-rich materials. This makes the Re-Os chronometer a valuable complement to geochronometers based on lithophile elements. In this review, we begin by discussing how the elemental abundances and isotopic compositions impact sample selection, analytical strategy, and data interpretation.
View Article and Find Full Text PDFEnviron Pollut
September 2025
ECOSPHERE, Department of Biology, University of Antwerp, Belgium.
PER: and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that accumulate in aquatic ecosystems, posing a threat to wildlife. This study examines the potential of Asian clams (Corbicula fluminea) as an active biomonitoring species for assessing PFAS contamination in the Scheldt River, Belgium. Clams were exposed in cages at six sites along the river for a six-week exposure period, with simultaneous collection of sediment and water samples at each site.
View Article and Find Full Text PDFMar Environ Res
September 2025
School of Biology, College of Science, University of Tehran, 1417935840, Tehran, Iran. Electronic address:
This study aimed to compare the species and functional diversity of macrobenthic communities between natural and planted mangrove ecosystems. Samples were collected from two mangrove sites in the Gulf of Oman. Physicochemical properties of water and sediment characteristics were analyzed to assess their correlation with community structure.
View Article and Find Full Text PDFInt J Radiat Biol
September 2025
Department of Geography, Nara Women's University, Nara, Japan.
Purpose: The number of oxygen vacancies in quartz measured by electron spin resonance (ESR) as the intensity of the E' center has been used to investigate the provenance of the sediments and has been found to be a good proxy in discussing the direction and intensity of the wind system in the past. While its temporal variations have been examined using marine sediments. The present study aimed to show that terrestrial sediments are also useful for such studies on climate change when it is continuous.
View Article and Find Full Text PDFMar Environ Res
September 2025
Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan.
The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.
View Article and Find Full Text PDF