98%
921
2 minutes
20
Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11477/mf.1416200846 | DOI Listing |
Cereb Cortex
August 2025
Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.
Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.
View Article and Find Full Text PDFDev Psychobiol
September 2025
Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA.
Social buffering may reduce the persistent impacts of acute early life stress (aELS) and, thus, has important implications for anxiety- and trauma-related disorders. First, we assessed whether aELS would induce maladaptive fear incubation in adult mice, a PTSD-like phenotype. Overall, animals showed incubation of fear memory in adulthood, independent of aELS condition.
View Article and Find Full Text PDFDev Psychobiol
September 2025
School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia.
Adolescent male rodents and humans exhibit impairments in extinguishing learned fear. Here, we investigated whether female adolescent rats exhibit such impairments and if extinction is affected by the estrous cycle as in adults. Following fear conditioning to a discrete cue, female adolescent Sprague Dawley rats were extinguished either around the onset of puberty, when estrous cycling begins, or across different stages of the estrous cycle.
View Article and Find Full Text PDFElife
September 2025
Center for Mind and Brain, University of California, Davis, Davis, United States.
Visual search relies on the ability to use information about the target in working memory to guide attention and make target-match decisions. The 'attentional' or 'target' template is thought to be encoded within an inferior frontal junction (IFJ)-visual attentional network. While this template typically contains veridical target features, behavioral studies have shown that target-associated information, such as statistically co-occurring object pairs, can also guide attention.
View Article and Find Full Text PDFFront Behav Neurosci
August 2025
Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Sound influences motor functions and sound perception is conversely modulated by locomotion. Accumulating evidence supports an interconnection between the auditory system and the basal ganglia (BG), which has functional implications on the interaction between the two systems. Substantial evidence now supports auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of the striatum (tTS) in rodents.
View Article and Find Full Text PDF