98%
921
2 minutes
20
This study achieved a nanocomposite structure of nickel oxide (NiO)/titanium dioxide (TiO₂) heterojunction on a TiO₂ film surface. The photocatalytic activity of this structure evaluated by decomposing methylene blue (MB) solution was strongly correlated to the conductive behavior of the NiO film. A -type NiO film of high concentration in contact with the native -type TiO₂ film, which resulted in a strong inner electrical field to effectively separate the photogenerated electron-hole pairs, exhibited a much better photocatalytic activity than the controlled TiO₂ film. In addition, the photocatalytic activity of the NiO/TiO₂ nanocomposite structure was enhanced as the thickness of the -NiO film decreased, which was beneficial for the migration of the photogenerated carriers to the structural surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455623 | PMC |
http://dx.doi.org/10.3390/ma8074273 | DOI Listing |
Inorg Chem
September 2025
Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China.
Sequential assembly of donor-acceptor components at the molecular level within a MOF is an effective strategy to achieve efficient electron-hole separation for enhancing the activity of photocatalysts. Meanwhile, the highly efficient and selective functionalization of tetrahydroisoquinoline (THIQ) under mild conditions remains an urgent demand in both the scientific and industrial communities. This work reports a donor-acceptor MOF photocatalyst () constructed by the coordinated assembly of donor and acceptor components, in which a naphthalene unit serves as an electron donor and a perylenediimide unit as an electron acceptor.
View Article and Find Full Text PDFInorg Chem
September 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Photocatalysis has emerged as a promising strategy to address water pollution caused by heavy metals and antibiotics. Zeolites exhibit significant potential in petrochemical catalysis; however, the development of zeolite-based photocatalysts remains a critical challenge for researchers. Herein, a novel Z-scheme heterojunction was designed and fabricated on the titanium-silicon zeolite TS-1 by modifying g-CN via a simple calcination process.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.
This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States.
The development of efficient and economical oxygen evolution reaction (OER) catalysts is highly desired, and cobalt-based nanomaterials are promising candidates. In this work, we tackle one key question for cobalt-assisted photocatalytic OER: What is the true active species of Co(OH) for the photocatalytic OER? Hence, we investigated photocatalytic OER on nanostructured Co(OH) and CoO for comparison. We found that there was a significant transformation of Co(OH) during the photocatalytic process with a [Ru(bpy)]/SO buffer.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, China.
The quest for sustainable and clean energy sources has led to significant research into photocatalytic water splitting, a process that converts solar energy into hydrogen fuel. This study demonstrates constructing a high-performance CdTe/CN van der Waals heterojunction for solar-driven water splitting hydrogen evolution. The proposed CdTe/CN heterojunction, investigated using first-principles calculations, integrates favorable structural stability and features a direct bandgap of 1.
View Article and Find Full Text PDF