98%
921
2 minutes
20
Recent studies have demonstrated the advantage of developing pressure-sensitive devices with light-emitting properties for direct visualization of pressure distribution, potential application to next generation touch panels and human-machine interfaces. To ensure that this technology is available to everyone, its production cost should be kept as low as possible. Here, simple device concepts, namely, pressure sensitive flexible hybrid electrodes and OLED architecture, are used to produce low-cost resistive or light-emitting pressure sensors. Additionally, integrating solution-processed self-assembled micro-structures into the flexible hybrid electrodes composed of an elastomer and conductive materials results in enhanced device performances either in terms of pressure or spatial distribution sensitivity. For instance, based on the pressure applied, the measured values for the resistances of pressure sensors range from a few MΩ down to 500 Ω. On the other hand, unlike their evaporated equivalents, the combination of solution-processed flexible electrodes with an inverted OLED architectures display bright green emission when a pressure over 200 kPa is applied. At a bias of 3 V, their luminance can be tuned by applying a higher pressure of 500 kPa. Consequently, features such as fingernails and fingertips can be clearly distinguished from one another in these long-lasting low-cost devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537286 | PMC |
http://dx.doi.org/10.1038/s41598-017-07284-8 | DOI Listing |
Biosens Bioelectron
September 2025
School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China. Electronic address:
The practical implementation of wearable sensing devices for human health monitoring requires significant advancements in lightweight design and multifunctional integration. Fiber-shaped sensors have attracted considerable research attention due to their ability to maintain exceptional sensitivity and measurement accuracy under various mechanical deformations, including bending, stretching, and torsion. Nevertheless, the functional integration remains constrained, particularly as evidenced by sensitivity degradation and device failure under extreme high-temperature conditions, which severely hinders their practical applicability for real-time health monitoring applications in complex environmental scenarios.
View Article and Find Full Text PDFSci Adv
September 2025
School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
Developing intelligent robots with integrated sensing capabilities is critical for advanced manufacturing, medical robots, and embodied intelligence. Existing robotic sensing technologies are limited to recording of acceleration, driving torque, pressure feedback, and so on. Expanding and integrating with the multimodal sensors to mimic and even surpass the human feeling is substantially underdeveloped.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.
Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Center, Sacred Heart College (Autonomous), affiliated to Thiruvalluvar University, Tirupattur, Tamil Nadu, 635 601, India.
Bismuth ferrite (BiFeO) is a semiconductor with multiferroic properties, synthesized by the sol-gel method. While static high-pressure studies have advanced our understanding of the phase behavior of BiFeO, the effects of dynamic pressure acoustic shock waves remain unexplored. In this study, BiFeO was subjected to 100 shock pulses with 0.
View Article and Find Full Text PDFOrthod Craniofac Res
September 2025
Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
Objective: It is well-established that occlusion and dental arch form are related to the morphology and function of the oral soft tissues. Oral soft tissue dynamic assessment is important for elucidating the causes of malocclusion and developing effective treatment methods. We previously developed a small mouthguard-type sensing device for measuring oral soft tissue pressure; however, its continuous measurement performance had not been thoroughly evaluated.
View Article and Find Full Text PDF