Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO NWs with variable shell thickness.

Phys Chem Chem Phys

Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: August 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dielectric polymer nanocomposites have received keen interest due to their potential application in energy storage. Nevertheless, the large contrast in dielectric constant between the polymer and nanofillers usually results in a significant decrease of breakdown strength of the nanocomposites, which is unfavorable for enhancing energy storage capability. Herein, BaTiO nanowires (NWs) encapsulated by TiO shells of variable thickness were utilized to fabricate dielectric polymer nanocomposites. Compared with nanocomposites with bare BaTiO NWs, significantly enhanced energy storage capability was achieved for nanocomposites with TiO encapsulated BaTiO NWs. For instance, an ultrahigh energy density of 9.53 J cm at 440 MV m could be obtained for nanocomposites comprising core-shell structured nanowires, much higher than that of nanocomposites with 5 wt% raw ones (5.60 J cm at 360 MV m). The discharged energy density of the proposed nanocomposites with 5 wt% mTiO@BaTiO-1 NWs at 440 MV m seems to rival or exceed those of some previously reported nanocomposites (mostly comprising core-shell structured nanofillers). More notably, this study revealed that the energy storage capability of the nanocomposites can be tailored by the TiO shell thickness. Finite element simulations were employed to analyze the electric field distribution in the nanocomposites. The enhanced energy storage capability should be mainly attributed to the smoother gradient of dielectric constant between the nanofillers and polymer matrix, which alleviated the electric field concentration and leakage current in the polymer matrix. The methods and results herein offer a feasible approach to construct high-energy-density polymer nanocomposites with core-shell structured nanowires.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp04096bDOI Listing

Publication Analysis

Top Keywords

energy storage
24
storage capability
20
polymer nanocomposites
16
nanocomposites
13
batio nws
12
core-shell structured
12
energy
8
shell thickness
8
dielectric polymer
8
dielectric constant
8

Similar Publications

Cellulosic Flexible Electronic Materials: Recent Advances in Structural Design, Functionalization, and Smart Applications.

Macromol Rapid Commun

September 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.

Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.

View Article and Find Full Text PDF

Engineering Brønsted Acidic Microenvironments via Strong Metal-Support Interaction in Single-Atom Pd/CeO for Acid-Free Acetalization Catalysis.

Inorg Chem

September 2025

College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia

Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.

View Article and Find Full Text PDF

Star-like Cluster SMg: A Binary Dianion Global Minimum Featuring a Planar Pentacoordinate Sulfur.

Inorg Chem

September 2025

The Key Laboratory of the Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, People's Republic of China.

For over half a century, clusters exhibiting unconventional bonding have captivated researchers due to their unique electronic characteristics. While most elements in the periodic table demonstrate this remarkable structural feature, sulfur has been notably absent from known global minima with a planar pentacoordinate center. Herein, we report the first binary dianion cluster, SMg, featuring a planar pentacoordinate sulfur (ppS) atom.

View Article and Find Full Text PDF

Janus MXene Fiber Constructed via Flake Orientation Engineering.

Adv Mater

September 2025

Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

The orientation of MXene flakes has received increasing research attention as it plays a critical role in determining the performance of MXene-based assemblies. Engineering MXene flakes into horizontal or vertical orientations can offer distinct advantages such as higher electrical conductivity, higher mechanical strength, and more efficient ion/molecule transport across the flakes. However, the benefits of horizontal and vertical orientations are mutually exclusive, and both of them possess structural symmetry that restricts their ability for stimuli-responsive deformation.

View Article and Find Full Text PDF

Lanthanum-Induced Gradient Fields in Asymmetric Heterointerface Catalysts for Enhanced Oxygen Electrocatalysis.

Adv Mater

September 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

Metal-nitrogen-carbon (M-N-C) catalysts display considerable potential as cost-effective alternatives to noble metals in oxygen electrocatalysis. However, uncontrolled atomic migration and random structural rearrangement during pyrolysis often lead to disordered coordination environments and sparse active sites, fundamentally limiting their intrinsic catalytic activities and long-term durability. Herein, a novel strategy is reported for use in directionally regulating atomic migration pathways via the incorporation of a foreign metal (La).

View Article and Find Full Text PDF