98%
921
2 minutes
20
Purpose Of Review: The quest for factors and mechanisms responsible for aberrant DNA methylation in human disease-including atherosclerosis-is a promising area of research. This review focuses on the role of fatty acids (FAs) as modulators of DNA methylation-in particular the role of mitochondrial beta-oxidation in FA-induced changes in DNA methylation during the progression of atherosclerosis.
Recent Findings: Recent publications have advanced the knowledge in all areas touched by this review: the causal role of lipids in shaping the DNA methylome, the associations between chronic degenerative disease and mitochondrial function, the lipid composition of the atheroma, and the relevance of DNA hypermethylation in atherosclerosis. Evidence is beginning to emerge, linking the dynamics of FA type abundance, mitochondrial function, and DNA methylation in the atheroma and systemically. In particular, this review highlights mitochondrial beta-oxidation as an important regulator of DNA methylation in metabolic disease. Despite the many questions still unanswered, this area of research promises to identify mechanisms and molecular factors that establish a pathological gene expression pattern in atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11883-017-0673-y | DOI Listing |
Mol Hum Reprod
September 2025
Department of Obstetrics and Gynecology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
Infertility impacts up to 17.5% of reproductive-aged couples worldwide. To aid in conception, many couples turn to assisted reproductive technology, such as IVF.
View Article and Find Full Text PDFEpigenomics
September 2025
College of Physical Education, Yangzhou University, Yangzhou, China.
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder lacking objective biomarkers for early diagnosis. DNA methylation is a promising epigenetic marker, and machine learning offers a data-driven classification approach. However, few studies have examined whole-blood, genome-wide DNA methylation profiles for ASD diagnosis in school-aged children.
View Article and Find Full Text PDFTree Physiol
September 2025
Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Microbiology, University College Cork, Cork, T12 Y337, Ireland.
The genomes of 43 distinct lactococcal strains were reconstructed by a combination of long- and short-read sequencing, resolving the plasmid complement and methylome of these strains. The genomes comprised 43 chromosomes of approximately 2.5 Mb each and 269 plasmids ranging from 2 to 211 kb (at an average occurrence of 6 per strain).
View Article and Find Full Text PDFJ Investig Med
September 2025
Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México.
It has been reported that DNA methylation in the epigenetic profile of the genes LEP and ADIPOQ is associated with obesity. To the best of our knowledge, there are no previous reports assessing the methylation of the LEP, LEPR, and ADIPOQ genes in subjects with metabolically healthy obesity (MHO). Therefore, the aim of this study was to determine the association between methylation of the LEP, LEPR, and ADIPOQ genes with the MHO phenotype.
View Article and Find Full Text PDF