Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Despite the importance of estimating population level cancer outcomes, most registries do not collect critical events such as relapse. Attempts to use health administrative data to identify these events have focused on older adults and have been mostly unsuccessful. We developed and tested administrative data-based algorithms in a population-based cohort of adolescents and young adults with cancer.
Methods: We identified all Ontario adolescents and young adults 15-21 years old diagnosed with leukemia, lymphoma, sarcoma, or testicular cancer between 1992-2012. Chart abstraction determined the end of initial treatment (EOIT) date and subsequent cancer-related events (progression, relapse, second cancer). Linkage to population-based administrative databases identified fee and procedure codes indicating cancer treatment or palliative care. Algorithms determining EOIT based on a time interval free of treatment-associated codes, and new cancer-related events based on billing codes, were compared with chart-abstracted data.
Results: The cohort comprised 1404 patients. Time periods free of treatment-associated codes did not validly identify EOIT dates; using subsequent codes to identify new cancer events was thus associated with low sensitivity (56.2%). However, using administrative data codes that occurred after the EOIT date based on chart abstraction, the first cancer-related event was identified with excellent validity (sensitivity, 87.0%; specificity, 93.3%; positive predictive value, 81.5%; negative predictive value, 95.5%).
Conclusions: Although administrative data alone did not validly identify cancer-related events, administrative data in combination with chart collected EOIT dates was associated with excellent validity. The collection of EOIT dates by cancer registries would significantly expand the potential of administrative data linkage to assess cancer outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MLR.0000000000000777 | DOI Listing |