98%
921
2 minutes
20
Water scarcity, either due to increased urbanisation or climatic variability, has motivated societies to reduce pressure on water resources mainly by reducing water demand. However, this practice alone is not sufficient to guarantee the quality of life that high quality water services underpin, especially within a context of increased urbanisation. As such, the idea of water reuse has been gaining momentum for some time and has recently found a more general context within the idea of the Circular Economy. This paper is set within the context of an ongoing discussion between centralized and decentralized water reuse techniques and the investigation of trade-offs between efficiency and economic viability of reuse at different scales. Specifically, we argue for an intermediate scale of a water reuse option termed 'sewer-mining', which could be considered a reuse scheme at the neighbourhood scale. We suggest that sewer mining (a) provides a feasible alternative reuse option when the geography of the wastewater treatment plant is problematic, (b) relies on mature treatment technologies and (c) presents an opportunity for Small Medium Enterprises (SME) to be involved in the water market, securing environmental, social and economic benefits. To support this argument, we report on a pilot sewer-mining application in Athens, Greece. The pilot, integrates two subsystems: a packaged treatment unit and an information and communications technology (ICT) infrastructure. The paper reports on the pilot's overall performance and critically evaluates the potential of the sewer-mining idea to become a significant piece of the circular economy puzzle for water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2017.07.026 | DOI Listing |
J Hazard Mater
September 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:
Advanced oxidation processes (AOPs) are among the most effective methods for industrial wastewater treatment, but their applications to remove trace organic contaminants (TrOCs) are hampered by a lack of "selectivity". Here, an AOP was established using Cr(III) to activate periodate (PI) (Cr(III)/PI system) realizing rapid TrOCs removal, in which 2 μM tetracycline hydrochloride was completely degraded within 8 min (with 29 μM Cr(III) and 30 μM PI, pH 8). Mechanism analysis revealed the positive effect of Cr(III) complexation on enhancing both the efficiency and selectivity of TrOCs removal.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Simultaneous sensing and quantification of pharmaceutically active compounds (PhACs) are crucial for protecting the environment and maintaining long-term ecological sustainability. This study focuses on the bio-based synthesis of BiS-ZnO nanocomposites (BiS-ZnO(bio)) using bio-extract for dual-analyte selective and simultaneous electrochemical monitoring of phenylbutazone (PBZ) and sulfamethoxazole (SMZ) in the environmental matrices. BiS-ZnO(bio) exhibited ZnO(bio) nanostructures embedded on BiS(bio) nanorods with an average rod length of 1409.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Solar Energy Research Centre (CIESOL), Joint Centre of the University of Almería-CIEMAT, Carretera de Sacramento s/n, Almería 04120, Spain.
This work aims to investigate the occurrence of 31 antibiotics (ABs), 2 bacteria ( and spp.) and their counterpart antibiotic-resistant bacteria (carbapenem and cephalosporin families), and several antibiotic-resistant genes (ARGs) throughout a full distribution system of reclaimed water (RW) in a real-scale scenario. The RW was analyzed (i) before and after the tertiary treatment (sand filtration and chlorination), (ii) during the storage period in secondary ponds before its use in irrigation, and (iii) directly in the droppers installed in four plastic-based greenhouses over 9 months.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Korea.
Cesium ions (Cs) are notable radioactive contaminants hazardous to humans and the environment. Among various remediation methods, adsorption is a practical way to remove Cs from water, and Prussian blue (PB) is well-known as an efficient Cs adsorbent. Although various PB derivatives have been proposed to treat Cs-contaminated water, soil remediation is still challenging due to the limited mobility of pollutants in soil.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Ecology and Environment, Anhui Normal University, Wuhu 241002, P. R. China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, P.R. China. Electronic address:
Trivalent antimony (Sb(III)) is listed as a priority aquatic contaminant due to its high toxicity. The oxidation of Sb(III) to pentavalent antimony (Sb(V)) and recovery is a desirable process for treatment of Sb-containing wastewater. Given the challenges of low cost and green production, researches on constructing an oxidation route in the absence of homogeneous oxidant for Sb oxidation and recovery are urgent.
View Article and Find Full Text PDF