Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Irreversible enzyme inhibitors and covalent chemical biology probes often utilize the reaction of a protein cysteine residue with an appropriately positioned electrophile (e.g., acrylamide) on the ligand template. However, cysteine residues are not always available for site-specific protein labeling, and therefore new approaches are needed to expand the toolkit of appropriate electrophiles ("warheads") that target alternative amino acids. We previously described the rational targeting of tyrosine residues in the active site of a protein (the mRNA decapping scavenger enzyme, DcpS) using inhibitors armed with a sulfonyl fluoride electrophile. These inhibitors subsequently enabled the development of clickable probe technology to measure drug-target occupancy in live cells. Here we describe a fluorosulfate-containing inhibitor (aryl fluorosulfate probe (FS-p1)) with excellent chemical and metabolic stability that reacts selectively with a noncatalytic serine residue in the same active site of DcpS as confirmed by peptide mapping experiments. Our results suggest that noncatalytic serine targeting using fluorosulfate electrophilic warheads could be a suitable strategy for the development of covalent inhibitor drugs and chemical probes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.7b00403DOI Listing

Publication Analysis

Top Keywords

noncatalytic serine
12
serine residue
8
active site
8
covalent enzyme
4
enzyme inhibition
4
inhibition fluorosulfate
4
fluorosulfate modification
4
modification noncatalytic
4
residue irreversible
4
irreversible enzyme
4

Similar Publications

Feline mammary carcinoma (FMC) is the most prevalent reproductive tumor in queens and is characterized by aggressive metastatic progression and short survival. Protein phosphorylation is a crucial process in cell regulation, with dysregulation linked to cancer progression, including human breast cancer. Although phosphoproteins have emerged as diagnostic and predictive markers in human breast cancer, knowledge remains limited on their role in FMC.

View Article and Find Full Text PDF

High-temperature requirement protein A1 (HTRA1) is a secreted serine protease with diverse substrates, including extracellular matrix proteins, proteins involved in amyloid deposition, and growth factors. Accordingly, HTRA1 has been implicated in a variety of neurodegenerative diseases including a leading cause of blindness in the elderly, age-related macular degeneration (AMD). In fact, genomewide association studies have identified that the 10q26 locus that contains confers the strongest genetic risk factor for AMD.

View Article and Find Full Text PDF

Cranioectodermal dysplasia (CED) is a ciliopathy characterized by skeletal and ectodermal abnormalities, renal failure, and liver fibrosis. Pathogenic variants in genes that encode the intraflagellar transport (IFT) complex components, particularly IFT-A, are responsible for approximately two-thirds of the CED cases. However, the cause of the remaining cases remains unknown.

View Article and Find Full Text PDF

TNIK Regulates Cytoskeletal Organization to Promote Focal Adhesion Turnover and Mitosis in Lung Adenocarcinoma.

Front Biosci (Landmark Ed)

May 2025

Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, China.

Background: Lung cancer is the primary cause of cancer-related mortality, but the molecular mechanisms behind this malignancy remain unclear.

Methods: The Cancer Genome Atlas (TCGA) online database and tissue chips were used to analyze the expression levels of tumor necrosis factor receptor-associated factor 2 (TRAF2)- and non-catalytic region of tyrosine kinase adaptor protein (NCK)- interacting kinase (TNIK) protein in lung cancer. A549 and PC-9 lung adenocarcinoma (LUAD) cells with stable TNIK knockdown were generated by lentivirus infection.

View Article and Find Full Text PDF

High-temperature requirement protein A1 (HTRA1) is a secreted serine protease with diverse substrates, including extracellular matrix proteins, proteins involved in amyloid deposition, and growth factors. Accordingly, HTRA1 has been implicated in a variety of neurodegenerative diseases including a leading cause of blindness in the elderly, age-related macular degeneration (AMD). In fact, genome wide association studies have identified that the 10q26 locus which contains confers the strongest genetic risk factor for AMD.

View Article and Find Full Text PDF