Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Central and peripheral B cell tolerance checkpoints are defective in many patients with autoimmune diseases, but the functionality of each discrete checkpoint has not been assessed in patients with Sjögren's syndrome (SS). We undertook this study to assess this functionality in SS patients.

Methods: Using a polymerase chain reaction-based approach that allows us to clone and express, in vitro, recombinant antibodies produced by single B cells, we tested the reactivity of recombinant antibodies cloned from single CD19+CD21 CD10+IgM CD27- newly emigrant/transitional B cells and CD19+CD21+CD10-IgM+CD27- mature naive B cells from 5 SS patients.

Results: We found that the frequencies of newly emigrant/transitional B cells expressing polyreactive antibodies were significantly increased in SS patients compared to those in healthy donors, revealing defective central B cell tolerance in SS patients. Frequencies of mature naive B cells expressing autoreactive antibodies were also significantly increased in SS patients, thereby illustrating an impaired peripheral B cell tolerance checkpoint in these patients.

Conclusion: Defective counterselection of developing autoreactive B cells observed in SS patients is a feature common to many other autoimmune diseases and may favor the development of autoimmunity by allowing autoreactive B cells to present self antigens to T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062007PMC
http://dx.doi.org/10.1002/art.40215DOI Listing

Publication Analysis

Top Keywords

cell tolerance
16
tolerance checkpoints
8
sjögren's syndrome
8
peripheral cell
8
autoimmune diseases
8
recombinant antibodies
8
cells
8
newly emigrant/transitional
8
emigrant/transitional cells
8
mature naive
8

Similar Publications

Actin cytoskeleton remodelling drives the migration of immune cells and their engagement in dynamic cell-cell contacts. The importance of actin cytoskeleton dynamics in immune cell function is highlighted by the discovery of inborn errors of immunity (IEIs) that are caused by defects in individual actin-regulatory proteins, resulting in immune-related actinopathies. In addition to susceptibility to infection, these often present with a vast array of autoimmune and autoinflammatory manifestations.

View Article and Find Full Text PDF

Mitochondrial dysfunction in myeloid cells: a central deficit in autoimmune diseases.

Trends Immunol

September 2025

Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, 10 Center Drive, 12N248C, Bethesda, MD 20892, USA. Electronic address:

Autoimmune diseases arise from genetic and environmental factors that disrupt immune tolerance. Recent studies highlight the role of myeloid cell immunometabolism, particularly mitochondrial dysfunction, in driving autoimmunity. Mitochondria regulate energy homeostasis and cell fate; their impairment leads to defective immune cell differentiation, abnormal effector activity, and chronic inflammation.

View Article and Find Full Text PDF

Environmental sustainability is seriously threatened by the discharge of wastewater containing hazardous heavy metals (such as Cr, Cd, As, Hg, etc.). The utilization of microalgae has recently come to light as a viable, environmentally acceptable method for removing heavy metals from contaminated sites.

View Article and Find Full Text PDF

Oxymatrine attenuates the type 1 diabetes mellitus via negative regulation of the follicular helper T cells.

Eur J Pharmacol

September 2025

Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China. Electronic address:

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder in which autoantibodies cause the immune system to attack and destroy pancreatic β-cells, leading to insufficient insulin production and impaired blood glucose control. T follicular helper (Tfh) cells are recognized as a group of CD4 T cells that help B cells to produce high-affinity antibodies. Our previous research found that oxymatrine (OMT) exhibits excellent immunomodulatory properties on Tfh cells in autoimmune diseases.

View Article and Find Full Text PDF