Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MmpL3 is a promising target for novel anti-tubercular agents, with numerous compound series identified as MmpL3 inhibitors. Despite this, there is an incomplete understanding of MmpL3 function. Here we show that Mycobacterium smegmatis MmpL3 mutant strains had an altered cell wall hydrophobicity, disrupted membrane potential and growth defects in liquid media. Compensatory mutations that restored normal growth also returned membrane potential to wild-type. M. smegmatis MmpL3 mutant strains were resistant to two anti-tubercular agents, SQ109 and AU1235, but were more sensitive to rifampicin, erythromycin and ampicillin. Exposure of M. smegmatis to AU1235 affected the cell wall composition and increased the potency of rifampicin. However, MmpL3 mutants did not prevent the dissipation of membrane potential following exposure to SQ109. These results demonstrate that in M. smegmatis, MmpL3 contributes to a number of important phenotypes such as membrane potential, cell wall composition, antibiotic susceptibility and fitness.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.000498DOI Listing

Publication Analysis

Top Keywords

membrane potential
20
smegmatis mmpl3
16
cell wall
12
antibiotic susceptibility
8
mycobacterium smegmatis
8
anti-tubercular agents
8
mmpl3 mutant
8
mutant strains
8
wall composition
8
mmpl3
7

Similar Publications

Transient electronics that can degrade after fulfilling their designed functionalities offer transformative potentials in biomedical implants (eliminating secondary surgeries), ecofriendly consumer electronics (reducing e-waste), and secure systems. However, the development of reliable transient energy supplies remains a critical challenge, thus limiting their widespread implementation. Among various solutions, wireless power supplies via near-field inductive coupling stand out as particularly promising candidates.

View Article and Find Full Text PDF

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Exploring the antiangiogenic effects of Phospholipases A from Bothrops diporus venom.

Cell Tissue Res

September 2025

Grupo de Investigaciones Biológicas y Moleculares (GIByM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA NEA), Universidad Nacional del Nordeste (UNNE)-CONICET, Corrientes, Argentina.

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a crucial process in both physiological and pathological contexts, including cancer. Phospholipases A (PLAs), enzymes found in snake venoms, have attracted attention due to their potential antiangiogenic properties. In this study, we explored the antiangiogenic effects of PLA isoforms isolated from Bothrops diporus venom using a combination of in vivo and ex vivo models.

View Article and Find Full Text PDF

Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.

View Article and Find Full Text PDF

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF