Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Azadirachta indica A. Juss, commonly known as Neem, is the reservoir of triterpenoids of economic importance. Metabolite analysis of different developmental stages of leaf and fruit suggests tissue-specific accumulation of the major triterpenoids in this important tree. Though biosynthesis of these complex molecules requires substrate flux from the isoprenoid pathway, enzymes involved in late biosynthetic steps remain uncharacterized. We established and analyzed transcriptome datasets from leaf and fruit and identified members of gene families involved in intermediate steps of terpenoid backbone biosynthesis and those related to secondary transformation leading to the tissue-specific triterpenoid biosynthesis. Expression analysis suggests differential expression of number of genes between leaf and fruit and probable participation in the biosynthesis of fruit-specific triterpenoids. Genome-wide analysis also identified members of gene families putatively involved in secondary modifications in late biosynthetic steps leading to the synthesis of highly oxygenated triterpenoids. Expression and molecular docking analyses suggest involvement of specific members of CYP450 family in secondary modifications for the biosynthesis of bioactive triterpenoids. This study generated rich genomic resource and identified genes involved in biosynthesis of important molecules, which will aid in the advancement of tools for functional genomics and elucidation of the biosynthesis of triterpenoid from this important tree.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505991PMC
http://dx.doi.org/10.1038/s41598-017-05291-3DOI Listing

Publication Analysis

Top Keywords

leaf fruit
12
azadirachta indica
8
genes involved
8
biosynthesis
8
involved biosynthesis
8
biosynthesis bioactive
8
bioactive triterpenoids
8
late biosynthetic
8
biosynthetic steps
8
identified members
8

Similar Publications

Due to the growing environmental and health concerns with chemical plant stimulants, there is a growing need to find alternative sources of plant stimulants that could help the seeds germinate and sustain their growth in the global climate change scenario. The article compares various seed stimulants such as chemical compounds (benzothiadiazole, salicylic acid, glycine betaine), alcoholic extracts from commercial plant products (English oak bark, ginger spices, turmeric spices, caraway fruits) and from wild plant leaves (Japanese pagoda tree, Himalayan balsam, stinging nettle and Bohemian knotweed) and their effects on wheat seed germination and seedling characteristics. It was found that BTH had significantly lower effect on seedling characteristics such as SG3 (%), SG5 (%), R/S III, SVI I (mm) and SVI III (mg) followed by ZO on SG3 (%), SG5 (%) and GI (unit).

View Article and Find Full Text PDF

Survey of a grapevine microbiome through functional metagenomics.

Food Res Int

November 2025

Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, Italy. Electronic address:

Microorganisms colonizing grapevines possess diverse functional capabilities that influence the health, growth, productivity and, consequently, wine quality. In this study, spatial and temporal dynamics of the microbiome of Vitis vinifera cv. Barbera grapevine were determined by shotgun sequencing.

View Article and Find Full Text PDF

Acanthopanax sessiliflorus, belonging to the Araliaceae family, is used as medicinal herbs and dietary supplements, and can be consumed as seasoned vegetables, salads, pickles, functional tea, and wine. Their edible parts (shoots, leaves, fruis, and stems) are considered as a highly valuable food source with health benefits. The comparison of the qualitative and quantitative characteristics of functional compounds in these plant parts is still limited.

View Article and Find Full Text PDF

Background: Red leaf blotch (RLB), caused by Polystigma amygdalinum, is a major foliar disease of almond trees in Mediterranean and Middle Eastern regions. While preventive fungicide applications are the main control strategy, cultural practices aimed at reducing pathogen inoculum in leaf litter are gaining relevance. This study evaluated the efficacy of four chemical treatments on fungal biomass and ascospore production in leaf litter and assessed the impact of two cultural practices-urea application and leaf litter removal-on airborne inoculum levels and disease incidence under field conditions.

View Article and Find Full Text PDF

The arabidopsis WAVE/SCAR protein BRICK1 associates with cell edges and plasmodesmata.

PLoS One

September 2025

Department of Biology, The University of Saskatchewan, College of Arts and Science, Saskatoon, Canada.

Plasmodesmata are specialized structures in plant cell walls that mediate intercellular communication by regulating the trafficking of molecules between adjacent cells. The actin cytoskeleton plays a pivotal role in controlling plasmodesmatal permeability, but the molecular mechanisms underlying this regulation remain unclear. Here, we report that BRK1, a component of the WAVE/SCAR complex involved in Arp2/3-mediated actin nucleation, localizes to PD and primary pit fields in A.

View Article and Find Full Text PDF